Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing

Yuping Li, Mengwei Dong, Xuejie Zou, Jinhao Zhang, Jian Zhang, Xiao Huang

PDF(6026 KB)
PDF(6026 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63303. DOI: 10.1007/s11467-023-1301-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing

Author information +
History +

Abstract

Breaking up bulk crystals of functional materials into nanoscale thinner layers can lead to interesting properties and enhanced functionalities due to the size and interface effects. However, unlike the van der Waals layered crystals, many materials cannot be exfoliated into thin layers by liquid exfoliation. BiFeO3 is a piezoelectric ceramic material, which is commonly synthesized as bulk crystals, limiting its wider applications. In this contribution, a freeze-drying assisted liquid exfoliation method was adopted to fabricate thin-layered BiFeO3 nanoplates with lateral sizes of up to 500 nm and thicknesses of 10−20 nm. The freeze-drying process showed a vital role in the preparation process by imposing stress on the dispersed BiFeO3 crystals during the liquid-to-solid-to-gas transition of the solvent. Such stress resulted in lattice strains in the freeze-dried BiFeO3 crystals, which enabled their further exfoliation under subsequent ultrasonication. Considering the intrinsic piezoelectric effect of BiFeO3, pressure sensors based on bulk and thin-layer BiFeO3 were also fabricated. The pressure sensor based on BiFeO3 nanoplates exhibited a largely enhanced sensitivity with a wider working range than the bulk counterpart, because of the stronger piezoelectric effect induced and the extra electrical charges at abundant interlayer interfaces. We suggest that the freeze-drying assisted liquid exfoliation method can be applied to other non-van der Waals crystals to bring about more functional material systems.

Graphical abstract

Keywords

BiFeO3 nanoplates / liquid exfoliation / piezoelectricity / pressure sensor

Cite this article

Download citation ▾
Yuping Li, Mengwei Dong, Xuejie Zou, Jinhao Zhang, Jian Zhang, Xiao Huang. Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing. Front. Phys., 2023, 18(6): 63303 https://doi.org/10.1007/s11467-023-1301-7

References

[1]
L. Tao , K. Zhang , H. Tian , Y. Liu , D. Y. Wang , Y. Q. Chen , Y. Yang , T. L. Ren . Graphene-paper pressure sensor for detecting human motions. ACS Nano, 2017, 11(9): 8790
CrossRef ADS Google scholar
[2]
L. Guan , A. Nilghaz , B. Su , L. Jiang , W. Cheng , W. Shen . Stretchable‐fiber‐confined wetting conductive liquids as wearable human health monitors. Adv. Funct. Mater., 2016, 26(25): 4511
CrossRef ADS Google scholar
[3]
C. M. Boutry , L. Beker , Y. Kaizawa , C. Vassos , H. Tran , A. C. Hinckley , R. Pfattner , S. Niu , J. Li , J. Claverie , Z. Wang , J. Chang , P. M. Fox , Z. Bao . Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng., 2019, 3(1): 47
CrossRef ADS Google scholar
[4]
L.LiJ.ZhengJ.ChenZ.LuoY.SuW.TangX.GaoY.LiC.CaoQ.LiuX.KangL.WangH.Li, Flexible pressure sensors for biomedical applications: From ex vivo to in vivo, Adv. Mater. Interfaces 7(17), 2000743 (2020)
[5]
D. Kim , N. Lu , R. Ma , Y. S. Kim , R. H. Kim , S. Wang , J. Wu , S. M. Won , H. Tao , A. Islam , K. J. Yu , T. Kim , R. Chowdhury , M. Ying , L. Xu , M. Li , H. J. Chung , H. Keum , M. McCormick , P. Liu , Y. W. Zhang , F. G. Omenetto , Y. Huang , T. Coleman , J. A. Rogers . Epidermal electronics. Science, 2011, 333(6044): 838
CrossRef ADS Google scholar
[6]
S. C. B. Mannsfeld , B. C. K. Tee , R. M. Stoltenberg , C. V. H. H. Chen , S. Barman , B. V. O. Muir , A. N. Sokolov , C. Reese , Z. Bao . Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 2010, 9(10): 859
CrossRef ADS Google scholar
[7]
D. J. Lipomi , M. Vosgueritchian , B. C. K. Tee , S. L. Hellstrom , J. A. Lee , C. H. Fox , Z. Bao . Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol., 2011, 6(12): 788
CrossRef ADS Google scholar
[8]
F. Fan , L. Lin , G. Zhu , W. Wu , R. Zhang , Z. L. Wang . Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett., 2012, 12(6): 3109
CrossRef ADS Google scholar
[9]
Y. Ding , J. Yang , C. R. Tolle , Z. Zhu . Flexible and compressible PEDOT: PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces, 2018, 10(18): 16077
CrossRef ADS Google scholar
[10]
X. Shuai , P. Zhu , W. Zeng , Y. Hu , X. Liang , Y. Zhang , R. Sun , C. Wong . Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces, 2017, 9(31): 26314
CrossRef ADS Google scholar
[11]
K. Maity , S. Garain , K. Henkel , D. Schmeißer , D. Mandal . Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl. Polym. Mater., 2020, 2(2): 862
CrossRef ADS Google scholar
[12]
S. Xu , Y. Qin , C. Xu , Y. Wei , R. Yang , Z. L. Wang . Self-powered nanowire devices. Nat. Nanotechnol., 2010, 5(5): 366
CrossRef ADS Google scholar
[13]
L. Lin , Y. Xie , S. Wang , W. Wu , S. Niu , X. Wen , Z. L. Wang . Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano, 2013, 7(9): 8266
CrossRef ADS Google scholar
[14]
T. Huang , S. Yang , P. He , J. Sun , S. Zhang , D. Li , Y. Meng , J. Zhou , H. Tang , J. Liang , G. Ding , X. Xie . Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces, 2018, 10(36): 30732
CrossRef ADS Google scholar
[15]
M. Ha , S. Lim , J. Park , D. S. Um , Y. Lee , H. Ko . Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater., 2015, 25(19): 2841
CrossRef ADS Google scholar
[16]
Y. Kim , K. Y. Lee , S. K. Hwang , C. Park , S. W. Kim , J. Cho . Layer-by-layer controlled perovskite nanocomposite thin films for piezoelectric nanogenerators. Adv. Funct. Mater., 2014, 24(40): 6262
CrossRef ADS Google scholar
[17]
Y. Qi , M. C. McAlpine . Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci., 2010, 3(9): 1275
CrossRef ADS Google scholar
[18]
H.LiuJ.ZhongC.LeeS.W. LeeL.Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, Appl. Phys. Rev. 5(4), 041306 (2018)
[19]
H. G. Yeo , T. Xue , S. Roundy , X. Ma , C. Rahn , S. Trolier-McKinstry . Strongly (001) oriented bimorph PZT film on metal foils grown by RF‐sputtering for wrist‐worn piezoelectric energy harvesters. Adv. Funct. Mater., 2018, 28(36): 1801327
CrossRef ADS Google scholar
[20]
J. Yi , L. Liu , L. Shu , Y. Huang , J. F. Li . Outstanding ferroelectricity in sol–gel-derived polycrystalline BiFeO3 films within a wide thickness range. ACS Appl. Mater. Interfaces, 2022, 14(18): 21696
CrossRef ADS Google scholar
[21]
J. Wang , J. B. Neaton , H. Zheng , V. Nagarajan , S. B. Ogale , B. Liu , D. Viehland , V. Vaithyanathan , D. G. Schlom , U. V. Waghmare , N. A. Spaldin , K. M. Rabe , M. Wuttig , R. Ramesh . Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719
CrossRef ADS Google scholar
[22]
J. Silva , A. Reyes , H. Esparza , H. Camacho , L. Fuentes . BiFeO3: A review on synthesis, doping and crystal structure. Integr. Ferroelectr., 2011, 126(1): 47
CrossRef ADS Google scholar
[23]
M. Dai , Z. Wang , F. Wang , Y. Qiu , J. Zhang , C. Y. Xu , T. Zhai , W. Cao , Y. Fu , D. Jia , Y. Zhou , P. A. Hu . Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett., 2019, 19(8): 5410
CrossRef ADS Google scholar
[24]
M. H. Lee , D. J. Kim , J. S. Park , S. W. Kim , T. K. Song , M. H. Kim , W. J. Kim , D. Do , I. K. Jeong . High-performance lead-free piezoceramics with high Curie temperatures. Adv. Mater., 2015, 27(43): 6976
CrossRef ADS Google scholar
[25]
K. Shimizu , H. Hojo , Y. Ikuhara , M. Azuma . Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater., 2016, 28(39): 8639
CrossRef ADS Google scholar
[26]
K. Shimizu , H. Hojo , Y. Ikuhara , M. Azuma . Piezoelectric materials: Enhanced piezoelectric response due to polarization rotation in cobalt-substituted BiFeO3 epitaxial thin films. Adv. Mater., 2016, 28(39): 8785
CrossRef ADS Google scholar
[27]
P. Hu , L. Yan , C. Zhao , Y. Zhang , J. Niu . Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Compos. Sci. Technol., 2018, 168: 327
CrossRef ADS Google scholar
[28]
K.N. DuerlooM.T. OngE.J. Reed, Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
[29]
LiuG. D. Zhao, T. Hu, L. Bellaiche , W. Ren., Structural and magnetic properties of two-dimensional layered BiFeO3 from first principles, Phys. Rev. B 103, 081403 (2021)
[30]
H. Yan , H. Deng , N. Ding , J. He , L. Peng , L. Sun , P. Yang , J. Chu . Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering. Mater. Lett., 2013, 111: 123
CrossRef ADS Google scholar
[31]
X. Zhang , J. Deng , J. Yan , Y. Song , Z. Mo , J. Qian , X. Wu , S. Yuan , H. Li , H. Xu . Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen. Appl. Surf. Sci., 2019, 490: 117
CrossRef ADS Google scholar
[32]
H. Wang , W. Lv , J. Shi , H. Wang , D. Wang , L. Jin , J. Chao , P. A. van Aken , R. Chen , W. Huang . Efficient liquid nitrogen exfoliation of MoS2 ultrathin nanosheets in the pure 2H phase. ACS Sustain. Chem. & Eng., 2020, 8(1): 84
CrossRef ADS Google scholar
[33]
Y. Wang , Y. Liu , J. Zhang , J. Wu , H. Xu , X. Wen , X. Zhang , C. S. Tiwary , W. Yang , R. Vajtai , Y. Zhang , N. Chopra , I. N. Odeh , Y. Wu , P. M. Ajayan . Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots. Sci. Adv., 2017, 3(12): 1701500
CrossRef ADS Google scholar
[34]
M. Abroodi , A. Bagheri , B. M. Razavizadeh . Surface tension of binary and ternary systems containing monoethanolamine (MEA), water and alcohols (methanol, ethanol, and isopropanol) at 303.15 K. J. Chem. Eng. Data, 2020, 65(6): 3173
CrossRef ADS Google scholar
[35]
S. Cesur , M. E. Cam , F. S. Sayin , O. Gunduz . Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer’s disease. J. Drug Deliv. Sci. Technol., 2022, 67: 102977
CrossRef ADS Google scholar
[36]
H. Ding , S. T. Khan , S. Zeng , L. Sun . Exfoliation of nanosized α-zirconium phosphate in methanol. Inorg. Chem., 2021, 60(11): 8276
CrossRef ADS Google scholar
[37]
K. Jonnalagadda , S. W. Cho , I. Chasiotis , T. Friedmann , J. Sullivan . Effect of intrinsic stress gradient on the effective mode-I fracture toughness of amorphous diamond-like carbon films for MEMS. J. Mech. Phys. Solids, 2008, 56(2): 388
CrossRef ADS Google scholar
[38]
K. Park , J. H. Son , G. T. Hwang , C. K. Jeong , J. Ryu , M. Koo , I. Choi , S. H. Lee , M. Byun , Z. L. Wang , K. J. Lee . Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater., 2014, 26(16): 2514
CrossRef ADS Google scholar
[39]
A. Barzegar , D. Damjanovic , N. Setter . Analytical modeling of the apparent d33 piezoelectric coefficient determined by the direct quasistatic method for different boundary conditions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52(11): 1897
CrossRef ADS Google scholar
[40]
J. Dong , G. Ouyang . Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets. J. Phys. D Appl. Phys., 2021, 54(23): 235502
CrossRef ADS Google scholar
[41]
Z.ZhuA.ZhangG.OuyangG.Yang, Edge effect on band gap shift in Si nanowires with polygonal cross-sections, Appl. Phys. Lett. 98(26), 263112 (2011)
[42]
J.DongG.Ouyang, Edge effect on the piezoelectric characteristics of rectangular-shaped monolayer MSe2 (M = Cr, Mo, W) nanosheets, J. Phys. D: Appl. Phys. 54(23), 235502 (2021)
[43]
Y. Lee , J. Park , S. Cho , Y. E. Shin , H. Lee , J. Kim , J. Myoung , S. Cho , S. Kang , C. Baig , H. Ko . Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano, 2018, 12(4): 4045
CrossRef ADS Google scholar

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1301-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1301-7.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51832001).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6026 KB)

Accesses

Citations

Detail

Sections
Recommended

/