A probabilistic model of quantum states for classical data security
Muhammad Waseem Hafiz, Seong Oun Hwang
A probabilistic model of quantum states for classical data security
The phenomenal progress of quantum information theory over the last decade has substantially broadened the potential to simulate the superposition of states for exponential speedup of quantum algorithms over their classical peers. Therefore, the conventional and modern cryptographic standards (encryption and authentication) are susceptible to Shor’s and Grover’s algorithms on quantum computers. The significant improvement in technology permits consummate levels of data protection by encoding classical data into small quantum states that can only be utilized once by leveraging the capabilities of quantum-assisted classical computations. Considering the frequent data breaches and increasingly stringent privacy legislation, we introduce a hybrid quantum-classical model to transform classical data into unclonable states, and we experimentally demonstrate perfect state transfer to exemplify the classical data. To alleviate implementation complexity, we propose an arbitrary quantum signature scheme that does not require the establishment of entangled states to authenticate users in order to transmit and receive arbitrated states to retrieve classical data. The consequences of the probabilistic model indicate that the quantum-assisted classical framework substantially enhances the performance and security of digital data, and paves the way toward real-world applications.
information security / quantum-classical cryptography / quantum information processing / quantum spin states / spin-${\color{[RGB]{12,108,100}} {\frac{1}{2}}} $ algebra / user authentication
[1] |
R. S. Bennink. Efficient verification of anticoncentrated quantum states. npj Quantum Inf., 2021, 7(1): 127
CrossRef
ADS
Google scholar
|
[2] |
H. Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, J. R. McClean. Quantum advantage in learning from experiments. Science, 2022, 376(6598): 1182
CrossRef
ADS
Google scholar
|
[3] |
N. N. Zhang, M. J. Tao, W. T. He, X. Y. Chen, X. Y. Kong, F. G. Deng, N. Lambert, Q. Ai. Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities. Front. Phys., 2021, 16(5): 51501
CrossRef
ADS
Google scholar
|
[4] |
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin.
CrossRef
ADS
Google scholar
|
[5] |
J.ChowO. DialJ.Gambetta, IBM Quantum breaks the 100-qubit processor barrier, IBM Research Blog, 2021
|
[6] |
P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE, 1994
|
[7] |
L.K. Grover, A fast quantum mechanical algorithm for database search: in: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996, pp 212–219
|
[8] |
M. W. Hafiz, W. K. Lee, S. O. Hwang, M. Khan, A. Latif. Discrete logarithmic factorial problem and Einstein crystal model based public-key cryptosystem for digital content confidentiality. IEEE Access, 2022, 10: 102119
CrossRef
ADS
Google scholar
|
[9] |
C.PaarJ. Pelzl, Introduction to public-key cryptography, in: Understanding Cryptography, Berlin, Heidelberg: Springer, 2010
|
[10] |
P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 1999, 41(2): 303
CrossRef
ADS
Google scholar
|
[11] |
Z.KirschM. Chow, Quantum computing: The risk to existing encryption methods, URL:
|
[12] |
M.I. BhatK. J. Giri, Impact of computational power on cryptography, in: Multimedia Security, Singapore: Springer, 2021 pp 45–88
|
[13] |
J.ProosC. Zalka, Shor’s discrete logarithm quantum algorithm for elliptic curves. arXiv: quant-ph/0301141 (2003)
|
[14] |
F.BoudotP. GaudryA.GuillevicN.HeningerE.ThoméP.Zimmermann, Comparing the difficulty of factorization and discrete logarithm: A 240-digit experiment, in: Annual International Cryptology Conference, 2020, pp 62–91
|
[15] |
S.BoneM. Castro, A brief history of quantum computing, Imperial College in London, 1997
|
[16] |
S. Joshi, D. Gupta. Grover’s algorithm in a 4-qubit search space. Journal of Quantum Computing., 2021, 3(4): 137
CrossRef
ADS
Google scholar
|
[17] |
M. E. Smid. Development of the advanced encryption standard. J. Res. Natl. Inst. Stand. Technol., 2021, 126: 126024
CrossRef
ADS
Google scholar
|
[18] |
NSA/CSS, Commercial national security algorithm suite and quantum computing FAQ, Information assurance directorate, 2016
|
[19] |
G. BrassardP. Høyer , A. Tapp., Quantum cryptanalysis of hash and claw-free functions, in: Latin American Symposium on Theoretical Informatics, Berlin, Heidelberg: Springer, 1998, pp 163–169
|
[20] |
X. Q. Cai, T. Y. Wang, C. Y. Wei, F. Gao. Cryptanalysis of quantum digital signature for the access control of sensitive data. Physica A, 2022, 593: 126949
CrossRef
ADS
Google scholar
|
[21] |
G.BenentiG. CasatiD.RossiniG.Strini, Principles of quantum computation and information: A comprehensive textbook, 2019
|
[22] |
C. Portmann, R. Renner. Security in quantum cryptography. Rev. Mod. Phys., 2022, 94(2): 025008
CrossRef
ADS
Google scholar
|
[23] |
N. Shettell, E. Kashefi, D. Markham. Cryptographic approach to quantum metrology. Phys. Rev. A, 2022, 105(1): L010401
CrossRef
ADS
Google scholar
|
[24] |
F. Xu, X. Ma, Q. Zhang, H. K. Lo, J. W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 2020, 92(2): 025002
CrossRef
ADS
Google scholar
|
[25] |
S. K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li.
CrossRef
ADS
Google scholar
|
[26] |
H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, M. Toyoshima. Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photonics, 2017, 11(8): 502
CrossRef
ADS
Google scholar
|
[27] |
Y. F. Yan, L. Zhou, W. Zhong, Y. B. Sheng. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys., 2021, 16(1): 11501
CrossRef
ADS
Google scholar
|
[28] |
Z.G. WangS. J. WeiG.L. Long, A quantum circuit design of AES requiring fewer quantum qubits and gate operations, Front. Phys. 17(4), 41501 (2022)
|
[29] |
H. M. Waseem, S. O. Hwang. Design of highly nonlinear confusion component based on entangled points of quantum spin states. Sci. Rep., 2023, 13(1): 1099
CrossRef
ADS
Google scholar
|
[30] |
M. C. Roehsner, J. A. Kettlewell, J. Fitzsimons, P. Walther. Probabilistic one-time programs using quantum entanglement. npj Quantum Inf., 2021, 7: 98
CrossRef
ADS
Google scholar
|
[31] |
M. C. Roehsner, J. A. Kettlewell, T. B. Batalhão, J. F. Fitzsimons, P. Walther. Quantum advantage for probabilistic one-time programs. Nat. Commun., 2018, 9(1): 5225
CrossRef
ADS
Google scholar
|
[32] |
K.HanA. RazaS.O. Hwang, CAPTCHA-based secret-key sharing using quantum communication, IT Prof. 23(6), 46 (2021)
|
[33] |
J. L. Pachuau, A. K. Saha. Generic conversion method for various spatial domain filters in quantum image processing. Physica A, 2022, 596: 127196
CrossRef
ADS
Google scholar
|
[34] |
Y. Wei, S. Wang, Y. Zhu, T. Li. Sender-controlled measurement-device-independent multiparty quantum communication. Front. Phys., 2022, 17(2): 21503
CrossRef
ADS
Google scholar
|
[35] |
Z. Ji, P. Fan, H. Zhang. Entanglement swapping for Bell states and Greenberger–Horne–Zeilinger states in qubit systems. Physica A, 2022, 585: 126400
CrossRef
ADS
Google scholar
|
[36] |
O. M. Sotnikov, I. A. Iakovlev, A. A. Iliasov, M. I. Katsnelson, A. A. Bagrov, V. V. Mazurenko. Certification of quantum states with hidden structure of their bitstrings. npj Quantum Inf., 2022, 8: 41
CrossRef
ADS
Google scholar
|
[37] |
J. Xiao, J. Wen, S. Wei, G. Long. Reconstructing unknown quantum states using variational layerwise method. Front. Phys., 2022, 17(5): 51501
CrossRef
ADS
Google scholar
|
[38] |
C. Luo, F. Guo, W. Wan, Y. Fang, P. Wang, X. Huang. Demonstration of ghost communication with an encrypted speckle. Opt. Laser Technol., 2022, 149: 107926
CrossRef
ADS
Google scholar
|
[39] |
Z. Qu, K. Wang, M. Zheng. Secure quantum fog computing model based on blind quantum computation. J. Ambient Intell. Humaniz. Comput., 2022, 13(8): 3807
CrossRef
ADS
Google scholar
|
[40] |
Q. Li, Z. Li, W. H. Chan, S. Zhang, C. Liu. Blind quantum computation with identity authentication. Phys. Lett. A, 2018, 382(14): 938
CrossRef
ADS
Google scholar
|
[41] |
S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, P. Walther. Demonstration of blind quantum computing. Science, 2012, 335(6066): 303
CrossRef
ADS
Google scholar
|
[42] |
Q. Li, C. Liu, Y. Peng, F. Yu, C. Zhang. Blind quantum computation where a user only performs single-qubit gates. Opt. Laser Technol., 2021, 142: 107190
CrossRef
ADS
Google scholar
|
[43] |
N.Wheeler, Spin matrices for arbitrary spin, Reed College Physics Department, Portland, 2000
|
[44] |
H. M. Waseem, M. Khan. Information confidentiality using quantum spinning, rotation and finite state machine. Int. J. Theor. Phys., 2018, 57(11): 3584
CrossRef
ADS
Google scholar
|
[45] |
J.Branson, Quantum physics, derive the expression for rotation operator, 2013
|
[46] |
A.AlghafisH. M. WaseemM.KhanS.S. Jamal, A hybrid cryptosystem for digital contents confidentiality based on rotation of quantum spin states, Physica A 554, 123908 (2020)
|
[47] |
F. Tacchino, A. Chiesa, S. Carretta, D. Gerace. Quantum computers as universal quantum Simulators: State‐of‐the‐art and perspectives. Adv. Quantum Technol., 2020, 3(3): 1900052
CrossRef
ADS
Google scholar
|
[48] |
H.M. WaseemM. Khan, A new approach to digital content privacy using quantum spin and finite-state machine, Appl. Phys. B 125(2), 27 (2019)
|
[49] |
R. E. Kastner. Unitary-only quantum theory cannot consistently describe the use of itself: On the frauchiger–renner paradox. Found. Phys., 2020, 50(5): 441
CrossRef
ADS
Google scholar
|
[50] |
S. Wiesner. Conjugate coding. ACM Sigact News., 1983, 15(1): 78
CrossRef
ADS
Google scholar
|
[51] |
A.Nayak, Optimal lower bounds for quantum automata and random access codes, in: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), IEEE, 1999, pp 369–376
|
[52] |
H. M. Waseem, A. Alghafis, M. Khan. An efficient public key cryptosystem based on dihedral group and quantum spin states. IEEE Access, 2020, 8: 71821
CrossRef
ADS
Google scholar
|
[53] |
S. I. Batool, M. Amin, H. M. Waseem. Public key digital contents confidentiality scheme based on quantum spin and finite state automation. Physica A, 2020, 537: 122677
CrossRef
ADS
Google scholar
|
[54] |
A.AlghafisH. M. WaseemM.KhanS.S. JamalM.Amin S.I. Batool, A novel digital contents privacy scheme based on quantum harmonic oscillator and schrodinger paradox, Wirel. Netw., (2020)
|
[55] |
A. H. Ismail, H. M. Waseem, M. Ishtiaq, S. S. Jamal, M. Khan. Quantum spin half algebra and generalized megrelishvili protocol for confidentiality of digital images. Int. J. Theor. Phys., 2021, 60(5): 1720
CrossRef
ADS
Google scholar
|
[56] |
W.K. WoottersW.H. Zurek, A single quantum cannot be cloned, Nature 299(5886), 802 (1982)
|
[57] |
K. D. Wu, T. Theurer, G. Y. Xiang, C. F. Li, G. C. Guo, M. B. Plenio, A. Streltsov. Quantum coherence and state conversion: Theory and experiment. npj Quantum Inf., 2020, 6: 22
CrossRef
ADS
Google scholar
|
[58] |
Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, G. L. Long. Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16(2): 21503
CrossRef
ADS
Google scholar
|
[59] |
B. Regula, K. Fang, X. Wang, G. Adesso. One-shot coherence distillation. Phys. Rev. Lett., 2018, 121(1): 010401
CrossRef
ADS
Google scholar
|
[60] |
R. Kuang, M. Barbeau. Quantum permutation pad for universal quantum-safe cryptography. Quantum Inform. Process., 2022, 21(6): 211
CrossRef
ADS
Google scholar
|
[61] |
S. Foulds, V. Kendon, T. Spiller. The controlled SWAP test for determining quantum entanglement. Quantum Sci. Technol., 2021, 6(3): 035002
CrossRef
ADS
Google scholar
|
[62] |
D. H. Jiang, Y. L. Xu, G. B. Xu. Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys., 2019, 58(3): 1036
CrossRef
ADS
Google scholar
|
[63] |
L. Zhang, H. W. Sun, K. J. Zhang, H. Y. Jia. An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inform. Process., 2017, 16(3): 70
CrossRef
ADS
Google scholar
|
[64] |
M. Q. Wang, X. Wang, T. Zhan. An efficient quantum digital signature for classical messages. Quantum Inform. Process., 2018, 17(10): 275
CrossRef
ADS
Google scholar
|
[65] |
S. Akleylek, M. Soysaldı, W. K. Lee, S. O. Hwang, D. C. Wong. Novel Postquantum MQ-based signature scheme for Internet of things with parallel implementation. IEEE Internet Things J., 2021, 8(8): 6983
CrossRef
ADS
Google scholar
|
[66] |
S.Erwin, Parsons to Develop Ground Operations Center for DARPA’s Blackjack Satellites, Space News, 2021
|
[67] |
M.Borowitz, The military use of small satellites in orbit, Briefings de l’Ifri, Ifri, 2022
|
[68] |
Korea-EUResearch CentreSejong-1
|
[69] |
S. Wehner, D. Elkouss, R. Hanson. Quantum internet: A vision for the road ahead. Science, 2018, 362(6412): eaam9288
CrossRef
ADS
Google scholar
|
[70] |
A. P. Bhatt, A. Sharma. Quantum cryptography for internet of things security. J. Electron. Sci. Technol., 2019, 17(3): 213
|
[71] |
J.LinW. YuN.ZhangX.YangH.Zhang W.Zhao, A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications, IEEE Internet Things J. 4(5), 1125 (2017)
|
/
〈 | 〉 |