Strongly nonlinear topological phases of cascaded topoelectrical circuits

Jijie Tang, Fangyuan Ma, Feng Li, Honglian Guo, Di Zhou

PDF(5290 KB)
PDF(5290 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33311. DOI: 10.1007/s11467-023-1292-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Strongly nonlinear topological phases of cascaded topoelectrical circuits

Author information +
History +

Abstract

Circuits provide ideal platforms of topological phases and matter, yet the study of topological circuits in the strongly nonlinear regime, has been lacking. We propose and experimentally demonstrate strongly nonlinear topological phases and transitions in one-dimensional electrical circuits composed of nonlinear capacitors. Nonlinear topological interface modes arise on domain walls of the circuit lattices, whose topological phases are controlled by the amplitudes of nonlinear voltage waves. Experimentally measured topological transition amplitudes are in good agreement with those derived from nonlinear topological band theory. Our prototype paves the way towards flexible metamaterials with amplitude-controlled rich topological phases and is readily extendable to two and three-dimensional systems that allow novel applications.

Graphical abstract

Keywords

strongly nonlinear / Berry phase / topological / electrical

Cite this article

Download citation ▾
Jijie Tang, Fangyuan Ma, Feng Li, Honglian Guo, Di Zhou. Strongly nonlinear topological phases of cascaded topoelectrical circuits. Front. Phys., 2023, 18(3): 33311 https://doi.org/10.1007/s11467-023-1292-4

References

[1]
M. Hafezi , S. Mittal , J. Fan , A. Migdall , J. M. Taylor . Imaging topological edge states in silicon photonics. Nat. Photonics, 2013, 7(12): 1001
CrossRef ADS Google scholar
[2]
M. S. Kirsch , Y. Zhang , M. Kremer , L. J. Maczewsky , S. K. Ivanov , Y. V. Kartashov , L. Torner , D. Bauer , A. Szameit , M. Heinrich . Nonlinear second-order photonic topological insulators. Nat. Phys., 2021, 17(9): 995
CrossRef ADS Google scholar
[3]
M. C. Rechtsman , J. M. Zeuner , Y. Plotnik , Y. Lumer , D. Podolsky , F. Dreisow , S. Nolte , M. Segev , A. Szameit . Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196
CrossRef ADS Google scholar
[4]
H. Schomerus . Topologically protected midgap states in complex photonic lattices. Opt. Lett., 2013, 38(11): 1912
CrossRef ADS Google scholar
[5]
A. B. Khanikaev , S. Hossein Mousavi , W. K. Tse , M. Kargarian , A. H. MacDonald , G. Shvets . Photonic topological insulators. Nat. Mater., 2013, 12(3): 233
CrossRef ADS Google scholar
[6]
L. Lu , J. D. Joannopoulos , M. Soljačić . Topological photonics. Nat. Photonics, 2014, 8(11): 821
CrossRef ADS Google scholar
[7]
T. Tuloup , R. W. Bomantara , C. H. Lee , J. Gong . Nonlinearity induced topological physics in momentum space and real space. Phys. Rev. B, 2020, 102(11): 115411
CrossRef ADS Google scholar
[8]
R. W. Bomantara , W. Zhao , L. Zhou , J. Gong . Nonlinear Dirac cones. Phys. Rev. B, 2017, 96(12): 121406
CrossRef ADS Google scholar
[9]
J. M. Zeuner , M. C. Rechtsman , Y. Plotnik , Y. Lumer , S. Nolte , M. S. Rudner , M. Segev , A. Szameit . Observation of topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett., 2015, 115(4): 040402
CrossRef ADS Google scholar
[10]
J. Jiang , J. Ren , Z. Guo , W. Zhu , Y. Long , H. Jiang , H. Chen . Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators. Phys. Rev. B, 2020, 101(16): 165427
CrossRef ADS Google scholar
[11]
Z. Guo , J. Jiang , H. Jiang , J. Ren , H. Chen . Observation of topological bound states in a double Su−Schrieffer−Heeger chain composed of split ring resonators. Phys. Rev. Res., 2021, 3(1): 013122
CrossRef ADS Google scholar
[12]
Z. Yang , F. Gao , X. Shi , X. Lin , Z. Gao , Y. Chong , B. Zhang . Topological acoustics. Phys. Rev. Lett., 2015, 114(11): 114301
CrossRef ADS Google scholar
[13]
A. Souslov , B. C. van Zuiden , D. Bartolo , V. Vitelli . Topological sound in active-liquid metamaterials. Nat. Phys., 2017, 13(11): 1091
CrossRef ADS Google scholar
[14]
G. Lee , D. Lee , J. Park , Y. Jang , M. Kim , J. Rho . Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys., 2022, 5(1): 94
CrossRef ADS Google scholar
[15]
R. Süsstrunk , S. D. Huber . Observation of phononic helical edge states in a mechanical topological insulator. Science, 2015, 349(6243): 47
CrossRef ADS Google scholar
[16]
C. He , X. Ni , H. Ge , X. Sun , Y. Chen , M. Lu , X. Liu , Y. Chen . Acoustic topological insulator and robust one-way sound transport. Nat. Phys., 2016, 12(12): 1124
CrossRef ADS Google scholar
[17]
V. Peano , C. Brendel , M. Schmidt , F. Marquardt . Topological phases of sound and light. Phys. Rev. X, 2015, 5(3): 031011
CrossRef ADS Google scholar
[18]
M. Xiao , G. Ma , Z. Yang , P. Sheng , Z. Q. Zhang , C. T. Chan . Geometric phase and band inversion in periodic acoustic system. Nat. Phys., 2015, 11(3): 240
CrossRef ADS Google scholar
[19]
H. He , C. Qiu , L. Ye , X. Cai , X. Fan , M. Ke , F. Zhang , Z. Liu . Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560(7716): 61
CrossRef ADS Google scholar
[20]
J. Lu , C. Qiu , L. Ye , X. Fan , M. Ke , F. Zhang , Z. Liu . Observation of topological valley transport of sound in sonic crystals. Nat. Phys., 2017, 13(4): 369
CrossRef ADS Google scholar
[21]
C. L. Kane , T. C. Lubensky . Topological boundary modes in isostatic lattices. Nat. Phys., 2014, 10(1): 39
CrossRef ADS Google scholar
[22]
J. Paulose , B. G. Chen , V. Vitelli . Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys., 2015, 11(2): 153
CrossRef ADS Google scholar
[23]
H. Xiu , H. Liu , A. Poli , G. Wan , K. Sun , E. M. Arruda , X. Mao . Topological transformability and reprogrammability of multistable mechanical metamaterials. Proc. Natl. Acad. Sci. USA, 2022, 119(52): e2211725119
CrossRef ADS Google scholar
[24]
D. Zhou , L. Zhang , X. Mao . Topological edge floppy modes in disordered fiber networks. Phys. Rev. Lett., 2018, 120(6): 068003
CrossRef ADS Google scholar
[25]
M. Fruchart , V. Vitelli . Symmetries and dualities in the theory of elasticity. Phys. Rev. Lett., 2020, 124(24): 248001
CrossRef ADS Google scholar
[26]
J. Ma , D. Zhou , K. Sun , X. Mao , S. Gonella . Edge modes and asymmetric wave transport in topological lattices: Experimental characterization at finite frequencies. Phys. Rev. Lett., 2018, 121(9): 094301
CrossRef ADS Google scholar
[27]
H. Liu , D. Zhou , L. Zhang , D. K. Lubensky , X. Mao . Topological floppy modes in models of epithelial tissues. Soft Matter, 2021, 17(38): 8624
CrossRef ADS Google scholar
[28]
M. Rosa , M. Ruzzene , E. Prodan . Topological gaps by twisting. Commun. Phys., 2021, 4(1): 130
CrossRef ADS Google scholar
[29]
D. Zhou , L. Zhang , X. Mao . Topological boundary floppy modes in quasicrystals. Phys. Rev. X, 2019, 9(2): 021054
CrossRef ADS Google scholar
[30]
Y. Fu , H. Qin . Topological phases and bulk-edge correspondence of magnetized cold plasmas. Nat. Commun., 2021, 12(1): 3924
CrossRef ADS Google scholar
[31]
Y. Fu , H. Qin . The dispersion and propagation of topological Langmuir-cyclotron waves in cold magnetized plasmas. J. Plasma Phys., 2022, 88(4): 835880401
CrossRef ADS Google scholar
[32]
V. V. Albert , L. I. Glazman , L. Jiang . Topological properties of linear circuit lattices. Phys. Rev. Lett., 2015, 114(17): 173902
CrossRef ADS Google scholar
[33]
S. Imhof , C. Berger , F. Bayer , J. Brehm , L. W. Molenkamp , T. Kiessling , F. Schindler , C. H. Lee , M. Greiter , T. Neupert , R. Thomale . Topolectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
CrossRef ADS Google scholar
[34]
J. Ningyuan , C. Owens , A. Sommer , D. Schuster , J. Simon . Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X, 2015, 5(2): 021031
CrossRef ADS Google scholar
[35]
T.GorenK.PlekhanovF.AppasK.L. Hur, Topological Zak phase in strongly coupled LC circuits, Phys. Rev. B 97, 041106(R) (2018)
[36]
W. Zhu , S. Hou , Y. Long , H. Chen , J. Ren . Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network. Phys. Rev. B, 2018, 97(7): 075310
CrossRef ADS Google scholar
[37]
M.Serra-GarciaR.SüsstrunkS.D. Huber, Observation of quadrupole transitions and edge mode topology in an LC network, Phys. Rev. B 99, 020304(R) (2019)
[38]
T. Helbig , T. Hofmann , S. Imhof , M. Abdelghany , T. Kiessling , L. W. Molenkamp , C. H. Lee , A. Szameit , M. Greiter , R. Thomale . Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
CrossRef ADS Google scholar
[39]
C. H. Lee , S. Imhof , C. Berger , F. Bayer , J. Brehm , L. W. Molenkamp , T. Kiessling , R. Thomale . Topolectrical circuits. Commun. Phys., 2018, 1(1): 39
CrossRef ADS Google scholar
[40]
D. Zou , T. Chen , W. He , J. Bao , C. H. Lee , H. Sun , X. Zhang . Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
CrossRef ADS Google scholar
[41]
T. Hofmann , T. Helbig , F. Schindler , N. Salgo , M. Brzezińska , M. Greiter , T. Kiessling , D. Wolf , A. Vollhardt , A. Kabaši , C. H. Lee , A. Bilušić , R. Thomale , T. Neupert . Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2020, 2(2): 023265
CrossRef ADS Google scholar
[42]
H.YangZ.X. LiY.LiuY.CaoP.Yan, Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Res. 2(2), 022028 (2020) (J)
[43]
T. Hofmann , T. Helbig , C. H. Lee , M. Greiter , R. Thomale . Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
CrossRef ADS Google scholar
[44]
L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , P. Xue . Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys., 2020, 16(7): 761
CrossRef ADS Google scholar
[45]
W. Zhu , Y. Long , H. Chen , J. Ren . Quantum valley Hall effects and spin-valley locking in topological Kane−Mele circuit networks. Phys. Rev. B, 2019, 99(11): 115410
CrossRef ADS Google scholar
[46]
Y. Lumer , Y. Plotnik , M. C. Rechtsman , M. Segev . Self-localized states in photonic topological insulators. Phys. Rev. Lett., 2013, 111(24): 243905
CrossRef ADS Google scholar
[47]
D. Leykam , Y. D. Chong . Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett., 2016, 117(14): 143901
CrossRef ADS Google scholar
[48]
Y.LumerM.C. RechtsmanY.PlotnikM.Segev, Instability of bosonic topological edge states in the presence of interactions, Phys. Rev. A 94, 021801(R) (2016)
[49]
Y. Hadad , A. B. Khanikaev , A. Alu . Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B, 2016, 93(15): 155112
CrossRef ADS Google scholar
[50]
Y. Hadad , J. C. Soric , A. B. Khanikaev , A. Alù . Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 2018, 1(3): 178
CrossRef ADS Google scholar
[51]
H.XiuI.FrankelH.LiuK.QianS.SarkarB.C. MacniderZ.ChenN.BoechlerX.Mao, Synthetically non-Hermitian nonlinear wave-like behavior in a topological mechanical metamaterial, arXiv: 2207.09273 (2022)
[52]
M. Fruchart , R. Hanai , P. B. Littlewood , V. Vitelli . Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363
CrossRef ADS Google scholar
[53]
Y. Wang , L. J. Lang , C. H. Lee , B. Zhang , Y. D. Chong . Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 2019, 10(1): 1102
CrossRef ADS Google scholar
[54]
D. Zhou , J. Ma , K. Sun , S. Gonella , X. Mao . Switchable phonon diodes using nonlinear topological Maxwell lattices. Phys. Rev. B, 2020, 101(10): 104106
CrossRef ADS Google scholar
[55]
R. K. Pal , J. Vila , M. Leamy , M. Ruzzene . Amplitude-dependent topological edge states in nonlinear phononic lattices. Phys. Rev. E, 2018, 97(3): 032209
CrossRef ADS Google scholar
[56]
D. Zhou , D. Z. Rocklin , M. J. Leamy , Y. Yao . Topological invariant and anomalous edge modes of strongly nonlinear systems. Nat. Commun., 2022, 13(1): 3379
CrossRef ADS Google scholar
[57]
J. R. Tempelman , K. H. Matlack , A. F. Vakakis . Topological protection in a strongly nonlinear interface lattice. Phys. Rev. B, 2021, 104(17): 174306
CrossRef ADS Google scholar
[58]
J. Vila , G. Paulino , M. Ruzzene . Role of nonlinearities in topological protection: Testing magnetically coupled fidget spinners. Phys. Rev. B, 2019, 99(12): 125116
CrossRef ADS Google scholar
[59]
D. Zhou , J. Zhang . Non-Hermitian topological metamaterials with odd elasticity. Phys. Rev. Res., 2020, 2(2): 023173
CrossRef ADS Google scholar
[60]
W. Cheng , G. Hu . Acoustic skin effect with non-reciprocal Willis materials. Appl. Phys. Lett., 2022, 121(4): 041701
CrossRef ADS Google scholar
[61]
See Supplementary Information for experimental setup and measurement, the nonlinear topological band theory, nonlinear Berry phase, and topological phase transitions.
[62]
A.F. Vakakis (Ed.), Normal Modes and Localization in Nonlinear Systems, Springer Dordrecht, 2001
[63]
C. Shang , Y. Zheng , B. A. Malomed . Weyl solitons in three-dimensional optical lattices. Phys. Rev. A, 2018, 97(4): 043602
CrossRef ADS Google scholar

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1292-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1292-4.

Author contributions

All authors contributed extensively to the work presented in this paper. Jijie Tang, and Feng Li carried out the experiments. Fangyuan Ma, and Di Zhou provided the theory and calculations. Di Zhou, and Feng Li wrote the paper and Supplemental Material.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102039, 12272040, and 12074446).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5290 KB)

Accesses

Citations

Detail

Sections
Recommended

/