Strongly nonlinear topological phases of cascaded topoelectrical circuits
Jijie Tang, Fangyuan Ma, Feng Li, Honglian Guo, Di Zhou
Strongly nonlinear topological phases of cascaded topoelectrical circuits
Circuits provide ideal platforms of topological phases and matter, yet the study of topological circuits in the strongly nonlinear regime, has been lacking. We propose and experimentally demonstrate strongly nonlinear topological phases and transitions in one-dimensional electrical circuits composed of nonlinear capacitors. Nonlinear topological interface modes arise on domain walls of the circuit lattices, whose topological phases are controlled by the amplitudes of nonlinear voltage waves. Experimentally measured topological transition amplitudes are in good agreement with those derived from nonlinear topological band theory. Our prototype paves the way towards flexible metamaterials with amplitude-controlled rich topological phases and is readily extendable to two and three-dimensional systems that allow novel applications.
strongly nonlinear / Berry phase / topological / electrical
[1] |
M. Hafezi , S. Mittal , J. Fan , A. Migdall , J. M. Taylor . Imaging topological edge states in silicon photonics. Nat. Photonics, 2013, 7(12): 1001
CrossRef
ADS
Google scholar
|
[2] |
M. S. Kirsch , Y. Zhang , M. Kremer , L. J. Maczewsky , S. K. Ivanov , Y. V. Kartashov , L. Torner , D. Bauer , A. Szameit , M. Heinrich . Nonlinear second-order photonic topological insulators. Nat. Phys., 2021, 17(9): 995
CrossRef
ADS
Google scholar
|
[3] |
M. C. Rechtsman , J. M. Zeuner , Y. Plotnik , Y. Lumer , D. Podolsky , F. Dreisow , S. Nolte , M. Segev , A. Szameit . Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196
CrossRef
ADS
Google scholar
|
[4] |
H. Schomerus . Topologically protected midgap states in complex photonic lattices. Opt. Lett., 2013, 38(11): 1912
CrossRef
ADS
Google scholar
|
[5] |
A. B. Khanikaev , S. Hossein Mousavi , W. K. Tse , M. Kargarian , A. H. MacDonald , G. Shvets . Photonic topological insulators. Nat. Mater., 2013, 12(3): 233
CrossRef
ADS
Google scholar
|
[6] |
L. Lu , J. D. Joannopoulos , M. Soljačić . Topological photonics. Nat. Photonics, 2014, 8(11): 821
CrossRef
ADS
Google scholar
|
[7] |
T. Tuloup , R. W. Bomantara , C. H. Lee , J. Gong . Nonlinearity induced topological physics in momentum space and real space. Phys. Rev. B, 2020, 102(11): 115411
CrossRef
ADS
Google scholar
|
[8] |
R. W. Bomantara , W. Zhao , L. Zhou , J. Gong . Nonlinear Dirac cones. Phys. Rev. B, 2017, 96(12): 121406
CrossRef
ADS
Google scholar
|
[9] |
J. M. Zeuner , M. C. Rechtsman , Y. Plotnik , Y. Lumer , S. Nolte , M. S. Rudner , M. Segev , A. Szameit . Observation of topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett., 2015, 115(4): 040402
CrossRef
ADS
Google scholar
|
[10] |
J. Jiang , J. Ren , Z. Guo , W. Zhu , Y. Long , H. Jiang , H. Chen . Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators. Phys. Rev. B, 2020, 101(16): 165427
CrossRef
ADS
Google scholar
|
[11] |
Z. Guo , J. Jiang , H. Jiang , J. Ren , H. Chen . Observation of topological bound states in a double Su−Schrieffer−Heeger chain composed of split ring resonators. Phys. Rev. Res., 2021, 3(1): 013122
CrossRef
ADS
Google scholar
|
[12] |
Z. Yang , F. Gao , X. Shi , X. Lin , Z. Gao , Y. Chong , B. Zhang . Topological acoustics. Phys. Rev. Lett., 2015, 114(11): 114301
CrossRef
ADS
Google scholar
|
[13] |
A. Souslov , B. C. van Zuiden , D. Bartolo , V. Vitelli . Topological sound in active-liquid metamaterials. Nat. Phys., 2017, 13(11): 1091
CrossRef
ADS
Google scholar
|
[14] |
G. Lee , D. Lee , J. Park , Y. Jang , M. Kim , J. Rho . Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys., 2022, 5(1): 94
CrossRef
ADS
Google scholar
|
[15] |
R. Süsstrunk , S. D. Huber . Observation of phononic helical edge states in a mechanical topological insulator. Science, 2015, 349(6243): 47
CrossRef
ADS
Google scholar
|
[16] |
C. He , X. Ni , H. Ge , X. Sun , Y. Chen , M. Lu , X. Liu , Y. Chen . Acoustic topological insulator and robust one-way sound transport. Nat. Phys., 2016, 12(12): 1124
CrossRef
ADS
Google scholar
|
[17] |
V. Peano , C. Brendel , M. Schmidt , F. Marquardt . Topological phases of sound and light. Phys. Rev. X, 2015, 5(3): 031011
CrossRef
ADS
Google scholar
|
[18] |
M. Xiao , G. Ma , Z. Yang , P. Sheng , Z. Q. Zhang , C. T. Chan . Geometric phase and band inversion in periodic acoustic system. Nat. Phys., 2015, 11(3): 240
CrossRef
ADS
Google scholar
|
[19] |
H. He , C. Qiu , L. Ye , X. Cai , X. Fan , M. Ke , F. Zhang , Z. Liu . Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 2018, 560(7716): 61
CrossRef
ADS
Google scholar
|
[20] |
J. Lu , C. Qiu , L. Ye , X. Fan , M. Ke , F. Zhang , Z. Liu . Observation of topological valley transport of sound in sonic crystals. Nat. Phys., 2017, 13(4): 369
CrossRef
ADS
Google scholar
|
[21] |
C. L. Kane , T. C. Lubensky . Topological boundary modes in isostatic lattices. Nat. Phys., 2014, 10(1): 39
CrossRef
ADS
Google scholar
|
[22] |
J. Paulose , B. G. Chen , V. Vitelli . Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys., 2015, 11(2): 153
CrossRef
ADS
Google scholar
|
[23] |
H. Xiu , H. Liu , A. Poli , G. Wan , K. Sun , E. M. Arruda , X. Mao . Topological transformability and reprogrammability of multistable mechanical metamaterials. Proc. Natl. Acad. Sci. USA, 2022, 119(52): e2211725119
CrossRef
ADS
Google scholar
|
[24] |
D. Zhou , L. Zhang , X. Mao . Topological edge floppy modes in disordered fiber networks. Phys. Rev. Lett., 2018, 120(6): 068003
CrossRef
ADS
Google scholar
|
[25] |
M. Fruchart , V. Vitelli . Symmetries and dualities in the theory of elasticity. Phys. Rev. Lett., 2020, 124(24): 248001
CrossRef
ADS
Google scholar
|
[26] |
J. Ma , D. Zhou , K. Sun , X. Mao , S. Gonella . Edge modes and asymmetric wave transport in topological lattices: Experimental characterization at finite frequencies. Phys. Rev. Lett., 2018, 121(9): 094301
CrossRef
ADS
Google scholar
|
[27] |
H. Liu , D. Zhou , L. Zhang , D. K. Lubensky , X. Mao . Topological floppy modes in models of epithelial tissues. Soft Matter, 2021, 17(38): 8624
CrossRef
ADS
Google scholar
|
[28] |
M. Rosa , M. Ruzzene , E. Prodan . Topological gaps by twisting. Commun. Phys., 2021, 4(1): 130
CrossRef
ADS
Google scholar
|
[29] |
D. Zhou , L. Zhang , X. Mao . Topological boundary floppy modes in quasicrystals. Phys. Rev. X, 2019, 9(2): 021054
CrossRef
ADS
Google scholar
|
[30] |
Y. Fu , H. Qin . Topological phases and bulk-edge correspondence of magnetized cold plasmas. Nat. Commun., 2021, 12(1): 3924
CrossRef
ADS
Google scholar
|
[31] |
Y. Fu , H. Qin . The dispersion and propagation of topological Langmuir-cyclotron waves in cold magnetized plasmas. J. Plasma Phys., 2022, 88(4): 835880401
CrossRef
ADS
Google scholar
|
[32] |
V. V. Albert , L. I. Glazman , L. Jiang . Topological properties of linear circuit lattices. Phys. Rev. Lett., 2015, 114(17): 173902
CrossRef
ADS
Google scholar
|
[33] |
S. Imhof , C. Berger , F. Bayer , J. Brehm , L. W. Molenkamp , T. Kiessling , F. Schindler , C. H. Lee , M. Greiter , T. Neupert , R. Thomale . Topolectrical circuit realization of topological corner modes. Nat. Phys., 2018, 14(9): 925
CrossRef
ADS
Google scholar
|
[34] |
J. Ningyuan , C. Owens , A. Sommer , D. Schuster , J. Simon . Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X, 2015, 5(2): 021031
CrossRef
ADS
Google scholar
|
[35] |
T.GorenK.PlekhanovF.AppasK.L. Hur, Topological Zak phase in strongly coupled LC circuits, Phys. Rev. B 97, 041106(R) (2018)
|
[36] |
W. Zhu , S. Hou , Y. Long , H. Chen , J. Ren . Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network. Phys. Rev. B, 2018, 97(7): 075310
CrossRef
ADS
Google scholar
|
[37] |
M.Serra-GarciaR.SüsstrunkS.D. Huber, Observation of quadrupole transitions and edge mode topology in an LC network, Phys. Rev. B 99, 020304(R) (2019)
|
[38] |
T. Helbig , T. Hofmann , S. Imhof , M. Abdelghany , T. Kiessling , L. W. Molenkamp , C. H. Lee , A. Szameit , M. Greiter , R. Thomale . Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
CrossRef
ADS
Google scholar
|
[39] |
C. H. Lee , S. Imhof , C. Berger , F. Bayer , J. Brehm , L. W. Molenkamp , T. Kiessling , R. Thomale . Topolectrical circuits. Commun. Phys., 2018, 1(1): 39
CrossRef
ADS
Google scholar
|
[40] |
D. Zou , T. Chen , W. He , J. Bao , C. H. Lee , H. Sun , X. Zhang . Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
CrossRef
ADS
Google scholar
|
[41] |
T. Hofmann , T. Helbig , F. Schindler , N. Salgo , M. Brzezińska , M. Greiter , T. Kiessling , D. Wolf , A. Vollhardt , A. Kabaši , C. H. Lee , A. Bilušić , R. Thomale , T. Neupert . Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2020, 2(2): 023265
CrossRef
ADS
Google scholar
|
[42] |
H.YangZ.X. LiY.LiuY.CaoP.Yan, Observation of symmetry-protected zero modes in topolectrical circuits, Phys. Rev. Res. 2(2), 022028 (2020) (J)
|
[43] |
T. Hofmann , T. Helbig , C. H. Lee , M. Greiter , R. Thomale . Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
CrossRef
ADS
Google scholar
|
[44] |
L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , P. Xue . Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys., 2020, 16(7): 761
CrossRef
ADS
Google scholar
|
[45] |
W. Zhu , Y. Long , H. Chen , J. Ren . Quantum valley Hall effects and spin-valley locking in topological Kane−Mele circuit networks. Phys. Rev. B, 2019, 99(11): 115410
CrossRef
ADS
Google scholar
|
[46] |
Y. Lumer , Y. Plotnik , M. C. Rechtsman , M. Segev . Self-localized states in photonic topological insulators. Phys. Rev. Lett., 2013, 111(24): 243905
CrossRef
ADS
Google scholar
|
[47] |
D. Leykam , Y. D. Chong . Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett., 2016, 117(14): 143901
CrossRef
ADS
Google scholar
|
[48] |
Y.LumerM.C. RechtsmanY.PlotnikM.Segev, Instability of bosonic topological edge states in the presence of interactions, Phys. Rev. A 94, 021801(R) (2016)
|
[49] |
Y. Hadad , A. B. Khanikaev , A. Alu . Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B, 2016, 93(15): 155112
CrossRef
ADS
Google scholar
|
[50] |
Y. Hadad , J. C. Soric , A. B. Khanikaev , A. Alù . Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 2018, 1(3): 178
CrossRef
ADS
Google scholar
|
[51] |
H.XiuI.FrankelH.LiuK.QianS.SarkarB.C. MacniderZ.ChenN.BoechlerX.Mao, Synthetically non-Hermitian nonlinear wave-like behavior in a topological mechanical metamaterial, arXiv: 2207.09273 (2022)
|
[52] |
M. Fruchart , R. Hanai , P. B. Littlewood , V. Vitelli . Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363
CrossRef
ADS
Google scholar
|
[53] |
Y. Wang , L. J. Lang , C. H. Lee , B. Zhang , Y. D. Chong . Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 2019, 10(1): 1102
CrossRef
ADS
Google scholar
|
[54] |
D. Zhou , J. Ma , K. Sun , S. Gonella , X. Mao . Switchable phonon diodes using nonlinear topological Maxwell lattices. Phys. Rev. B, 2020, 101(10): 104106
CrossRef
ADS
Google scholar
|
[55] |
R. K. Pal , J. Vila , M. Leamy , M. Ruzzene . Amplitude-dependent topological edge states in nonlinear phononic lattices. Phys. Rev. E, 2018, 97(3): 032209
CrossRef
ADS
Google scholar
|
[56] |
D. Zhou , D. Z. Rocklin , M. J. Leamy , Y. Yao . Topological invariant and anomalous edge modes of strongly nonlinear systems. Nat. Commun., 2022, 13(1): 3379
CrossRef
ADS
Google scholar
|
[57] |
J. R. Tempelman , K. H. Matlack , A. F. Vakakis . Topological protection in a strongly nonlinear interface lattice. Phys. Rev. B, 2021, 104(17): 174306
CrossRef
ADS
Google scholar
|
[58] |
J. Vila , G. Paulino , M. Ruzzene . Role of nonlinearities in topological protection: Testing magnetically coupled fidget spinners. Phys. Rev. B, 2019, 99(12): 125116
CrossRef
ADS
Google scholar
|
[59] |
D. Zhou , J. Zhang . Non-Hermitian topological metamaterials with odd elasticity. Phys. Rev. Res., 2020, 2(2): 023173
CrossRef
ADS
Google scholar
|
[60] |
W. Cheng , G. Hu . Acoustic skin effect with non-reciprocal Willis materials. Appl. Phys. Lett., 2022, 121(4): 041701
CrossRef
ADS
Google scholar
|
[61] |
See Supplementary Information for experimental setup and measurement, the nonlinear topological band theory, nonlinear Berry phase, and topological phase transitions.
|
[62] |
A.F. Vakakis (Ed.), Normal Modes and Localization in Nonlinear Systems, Springer Dordrecht, 2001
|
[63] |
C. Shang , Y. Zheng , B. A. Malomed . Weyl solitons in three-dimensional optical lattices. Phys. Rev. A, 2018, 97(4): 043602
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |