Overcoming Debye length limitations: Three-dimensional wrinkled graphene field-effect transistor for ultra-sensitive adenosine triphosphate detection

Yue Ding, Chonghui Li, Meng Tian, Jihua Wang, Zhenxing Wang, Xiaohui Lin, Guofeng Liu, Wanling Cui, Xuefan Qi, Siyu Li, Weiwei Yue, Shicai Xu

PDF(6034 KB)
PDF(6034 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53301. DOI: 10.1007/s11467-023-1281-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Overcoming Debye length limitations: Three-dimensional wrinkled graphene field-effect transistor for ultra-sensitive adenosine triphosphate detection

Author information +
History +

Abstract

Adenosine triphosphate (ATP) is closely related to the pathogenesis of certain diseases, so the detection of trace ATP is of great significance to disease diagnosis and drug development. Graphene field-effect transistors (GFETs) have been proven to be a promising platform for the rapid and accurate detection of small molecules, while the Debye shielding limits the sensitive detection in real samples. Here, a three-dimensional wrinkled graphene field-effect transistor (3D WG-FET) biosensor for ultra-sensitive detection of ATP is demonstrated. The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM, which is much lower than the reported results. In addition, the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM. Meanwhile, we achieved ultra-sensitive (LOD: 10 aM) and quantitative (range from 10 aM to 100 fM) measurements of ATP in human serum. The 3D WG-FET also exhibits high specificity. This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix, showing a broad application value for early clinical diagnosis and food health monitoring.

Graphical abstract

Keywords

ATP in complex human serum / three-dimensional wrinkled graphene / field effect transistor / Debye shielding / ultra-sensitive

Cite this article

Download citation ▾
Yue Ding, Chonghui Li, Meng Tian, Jihua Wang, Zhenxing Wang, Xiaohui Lin, Guofeng Liu, Wanling Cui, Xuefan Qi, Siyu Li, Weiwei Yue, Shicai Xu. Overcoming Debye length limitations: Three-dimensional wrinkled graphene field-effect transistor for ultra-sensitive adenosine triphosphate detection. Front. Phys., 2023, 18(5): 53301 https://doi.org/10.1007/s11467-023-1281-7

References

[1]
F. Di. Virgilio , A. C. Sarti , S. Falzoni , E. De. Marchi , E. Adinolfi . Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer, 2018, 18(10): 601
CrossRef ADS Google scholar
[2]
Y.XuQ.KangB.YangB.ChenM.HeB.Hu, A nanoprobe based on molybdenum disulfide nanosheets and silver nanoclusters for imaging and quantification of intracellular adenosine triphosphate, Anal. Chim. Acta 1134, 75 (2020)
[3]
J.DengA.Walther, ATP‐responsive and ATP‐fueled self‐assembling systems and materials, Adv. Mater. 32(42), 2002629 (2020)
[4]
C. H. Wang , Y. Zhang , W. Tang , C. Wang , Y. K. Han , L. Qiang , J. W. Gao , H. Liu , L. Han . Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal. Chim. Acta, 2021, 1178: 338791
CrossRef ADS Google scholar
[5]
L.XiaoK.LiB.Z. LiuJ.Y. TuT.X. LiY.T. LiG.J. Zhang, A pH-sensitive field-effect transistor for monitoring of cancer cell external acid environment, Talanta 252, 123764 (2023)
[6]
T. N. Seyfried , G. Arismendi-Morillo , P. Mukherjee , C. Chinopoulos . On the origin of ATP synthesis in cancer. iScience, 2020, 23(11): 101761
CrossRef ADS Google scholar
[7]
P. P. Sun , H. C. Chen , S. Y. Lu , J. Hai , W. T. Guo , Y. H. Jing , B. D. Wang . Simultaneous sensing of H2S and ATP with a two-photon fluorescent probe in Alzheimer’s disease: Toward understanding Why H2S regulates glutamate-induced ATP dysregulation. Anal. Chem., 2022, 94(33): 11573
CrossRef ADS Google scholar
[8]
K. M. Dwyer , B. K. Kishore , S. C. Robson . Conversion of extracellular ATP into adenosine: A master switch in renal health and disease. Nat. Rev. Nephrol., 2020, 16(9): 509
CrossRef ADS Google scholar
[9]
Y. Liu , L. Q. Kong , H. Li , R. Yuan , Y. Q. Chai . Electrochemical aptamer biosensor based on ATP-induced 2D DNA structure switching for rapid and ultrasensitive detection of ATP. Anal. Chem., 2022, 94(18): 6819
CrossRef ADS Google scholar
[10]
L.PengJ.ZhouG.LiuL.YinS.RenS.ManL.Ma, CRISPR-Cas12a based aptasensor for sensitive and selective ATP detection, Sensor Actuat B-Chem. 320, 128164
[11]
L.L. YaoW.J. ZhangC.X. YinY.B. ZhangF.J. Huo, A tracer-type fluorescent probe for imaging adenosine triphosphate under the stresses of hydrogen sulfide and hydrogen peroxide in living cells, Analyst (Lond. ) 147(19), 4222 (2022)
[12]
X. Chen , Y. Liu , X. Fang , Z. Li , H. Pu , J. Chang , J. Chen , S. Mao . Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosens. Bioelectron., 2019, 126: 664
CrossRef ADS Google scholar
[13]
I. Park , J. Lim , S. You , M. T. Hwang , J. Kwon , K. Koprowski , S. Kim , J. Heredia , S. A. S. Ramirez , E. Valera , R. Bashir . Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sens., 2021, 6(12): 4461
CrossRef ADS Google scholar
[14]
B. Kwon , H. Bae , H. Lee , S. Kim , J. Hwang , H. Lim , J. H. Lee , K. Cho , J. Ye , S. Lee , W. H. Lee . Ultrasensitive N-channel graphene gas sensors by nondestructive molecular doping. ACS Nano, 2022, 16(2): 2176
CrossRef ADS Google scholar
[15]
J. W. Gao , C. H. Wang , C. Wang , Y. J. Chu , S. Wang , M. Y. Sun , H. Ji , Y. K. Gao , Y. H. Wang , Y. K. Han , F. T. Song , H. Liu , Y. Zhang , L. Han . Poly-L-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection. Anal. Chem., 2022, 94(3): 1626
CrossRef ADS Google scholar
[16]
T. Zhang , S. Wu , R. Yang , G. Zhang . Graphene: Nanostructure engineering and applications. Front. Phys., 2017, 12(1): 127206
CrossRef ADS Google scholar
[17]
X. Chen , S. Hao , B. Zong , C. Liu , S. Mao . Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens. Bioelectron., 2019, 145: 111711
CrossRef ADS Google scholar
[18]
J. Li , D. Wu , Y. Yu , T. X. Li , K. Li , M. M. Xiao , Y. R. Li , Z. Y. Zhang , G. J. Zhang . Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens. Bioelectron., 2021, 183: 113206
CrossRef ADS Google scholar
[19]
S. Islam , S. Shukla , V. K. Bajpai , Y. K. Han , Y. S. Huh , A. Ghosh , S. Gandhi . Microfluidic-based graphene field effect transistor for femtomolar detection of chlorpyrifos. Sci. Rep., 2019, 9(1): 276
CrossRef ADS Google scholar
[20]
S. Mao , J. Chang , H. Pu , G. Lu , Q. He , H. Zhang , J. Chen . Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev., 2017, 46(22): 6872
CrossRef ADS Google scholar
[21]
S. K. Tiwari , S. Sahoo , N. Wang , A. Huczko . Graphene research and their outputs: Status and prospect. Sci. Adv. Mater Dev., 2020, 5(1): 10
CrossRef ADS Google scholar
[22]
X. M. Huang , L. Z. Liu , S. Zhou , J. J. Zhao . Physical properties and device applications of graphene oxide. Front. Phys., 2020, 15(3): 33301
CrossRef ADS Google scholar
[23]
S.MukherjeeX.MeshikM.ChoiS.FaridD.DattaY.LanS.PoduriK.SarkarU.BaterdeneC.E. HuangY.Y. WangP.BurkeM.DuttaM.A. Stroscio, A graphene and aptamer based liquid gated FET-like electrochemical biosensor to detect adenosine triphosphate, IEEE Trans. Nanobiosci. 14(8), 967 (2015)
[24]
W. W. Yue , S. Z. Jiang , S. C. Xu , C. J. Bai . Fabrication of integrated field-effect transistors and detecting system based on CVD grown graphene. Sens. Actuators B Chem., 2014, 195: 467
CrossRef ADS Google scholar
[25]
M. Cheng , J. Yang , X. Li , H. Li , R. Du , J. Shi , J. He . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef ADS Google scholar
[26]
Z. Wang , Z. Hao , S. Yu , C. G. De Moraes , L. H. Suh , X. Zhao , Q. Lin . An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater., 2019, 29(44): 1905202
CrossRef ADS Google scholar
[27]
H. H. Bay , R. Vo , X. C. Dai , H. H. Hsu , Z. M. Mo , S. Cao , W. Y. Li , F. G. Omenetto , X. C. Jiang . Hydrogel gate graphene field-effect transistors as multiplexed biosensors. Nano Lett., 2019, 19(4): 2620
CrossRef ADS Google scholar
[28]
Y. K. Han , Y. R. Han , Y. Z. Huang , C. Wang , H. Liu , L. Han , Y. Zhang . Laser‐induced graphene superhydrophobic surface transition from pinning to rolling for multiple applications. Small Methods, 2022, 6(4): 2200096
CrossRef ADS Google scholar
[29]
R. Wang , X. G. Ren , Z. Yan , L. J. Jiang , W. E. Sha , G. C. Shan . Graphene based functional devices: A short review. Front. Phys., 2019, 14(1): 13603
CrossRef ADS Google scholar
[30]
M. Hu , N. Zhang , G. Shan , J. Gao , J. Liu , R. K. Li . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13(4): 138113
CrossRef ADS Google scholar
[31]
N. Nakatsuka , K. A. Yang , J. Abendroth , K. Cheung , X. Xu , H. Yang , C. Z. Zhao , B. W. Zhu , Y. Rim , Y. Yang , P. Weiss , M. Stojanovic , A. Andrews . Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018, 362(6412): 319
CrossRef ADS Google scholar
[32]
Z. R. Wang , Z. Hao , C. Yang , H. Wang , C. Huang , Z. Zhao , Y. L. Pan . Ultra-sensitive and rapid screening of acute myocardial infarction using 3D-affinity graphene biosensor. Cell Rep. Phys. Sci., 2022, 3(5): 100855
CrossRef ADS Google scholar
[33]
J. W. Gao , Y. K. Gao , Y. K. Han , J. B. Pang , C. Wang , Y. H. Wang , H. Liu , Y. Zhang , L. Han . Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater., 2020, 2(4): 1090
CrossRef ADS Google scholar
[34]
F.ZhangY.H. LiJ.Y. LiZ.R. TangY.J. Xu, 3D graphene-based gel photocatalysts for environmental pollutants degradation, Environ. Pollut. 253, 365 (2019)
[35]
T. Deng , Z. H. Zhang , Y. X. Liu , Y. X. Wang , F. Su , S. S. Li , Y. Zhang , H. Li , H. J. Chen , Z. R. Zhao , Y. Li , Z. Liu . Three-dimensional graphene field-effect transistors as high-performance photodetectors. Nano Lett., 2019, 19(3): 1494
CrossRef ADS Google scholar
[36]
C. Wang , S. X. Yang , H. R. Zhang , L. N. Du , L. Wang , F. Y. Yang , X. Z. Zhang , Q. Liu . Synthesis of atomically thin GaSe wrinkles for strain sensors. Front. Phys., 2016, 11: 116802
CrossRef ADS Google scholar
[37]
Y. Z. Huang , Y. K. Han , J. Y. Sun , Y. Zhang , L. Han . Dual nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials integrated with a smartphone portable electrochemical system for point-of-care non-enzymatic glucose diagnosis. Mater. Today Chem., 2022, 24: 100895
CrossRef ADS Google scholar
[38]
M. T. Hwang , M. Heiranian , Y. Kim , S. You , J. Leem , A. Taqieddin , V. Faramarzi , Y. Jing , I. Park , A. M. van der Zande , S. Nam , N. R. Aluru , R. Bashir . Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun., 2020, 11(1): 1543
CrossRef ADS Google scholar
[39]
Y. Wang , Z. Ni , T. Yu , Z. X. Shen , H. Wang , Y. Wu , W. Chen , A. T. S. Wee . Raman studies of monolayer graphene: The substrate effect. J. Phys. Chem. C., 2008, 112(29): 10637
CrossRef ADS Google scholar
[40]
N. Itoh , N. Hanari . Development of a polystyrene reference material for raman spectrometer (NMIJ RM 8158-a). Anal. Sci., 2021, 37(11): 1533
CrossRef ADS Google scholar
[41]
X. X. Zhou , R. Liu , L. T. Hao , J. F. Liu . Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy. Talanta, 2021, 221: 121552
CrossRef ADS Google scholar
[42]
F. Qing , Y. Zhang , Y. Niu , R. Stehle , Y. Chen , X. Li . Towards large-scale graphene transfer. Nanoscale, 2020, 12(20): 10890
CrossRef ADS Google scholar
[43]
S. C. Xu , J. Zhan , B. Y. Man , S. Z. Jiang , W. W. Yue , S. B. Gao , C. G. Guo , H. P. Liu , Z. H. Li , J. H. Wang , Y. Q. Zhou . Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Commun., 2017, 8(1): 14902
CrossRef ADS Google scholar
[44]
N. Nekrasov , S. Jaric , D. Kireev , A. V. Emelianov , A. V. Orlov , I. Gadjanski , P. I. Nikitin , D. Akinwande , I. Bobrinetskiy . Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosens. Bioelectron., 2022, 200: 113890
CrossRef ADS Google scholar
[45]
G. F. Wu , X. Tang , M. Meyyappan , K. W. C. Lai . Doping effects of surface functionalization on graphene with aromatic molecule and organic solvents. Appl. Surf. Sci., 2017, 425: 713
CrossRef ADS Google scholar
[46]
M. Tian , M. Qiao , C. C. Shen , F. Meng , L. A. Frank , V. V. Krasitskaya , T. J. Wang , X. M. Zhang , R. H. Song , Y. X. Li , J. J. Liu , S. C. Xu , J. H. Wang . Highly-sensitive graphene field effect transistor biosensor using PNA and DNA probes for RNA detection. Appl. Surf. Sci., 2020, 527: 146839
CrossRef ADS Google scholar
[47]
Y. N. Zhang , Y. Ding , C. Li , H. Q. Xu , C. X. Liu , J. J. Wang , Y. Ma , J. F. Ren , Y. F. Zhao , W. W. Yue . An optic-fiber graphene field effect transistor biosensor for the detection of single-stranded DNA. Anal. Methods, 2021, 13(15): 1839
CrossRef ADS Google scholar
[48]
C. T. Lin , P. T. K. Loan , T. Y. Chen , K. K. Liu , C. H. Chen , K. H. Wei , L. J. Li . Label-free electrical detection of DNA hybridization on graphene using Hall effect measurements: Revisiting the sensing mechanism. Adv. Funct. Mater., 2013, 23(18): 2301
CrossRef ADS Google scholar
[49]
E. Sameiyan , E. Bagheri , S. Dehghani , M. Ramezani , M. Alibolandi , K. Abnous , S. M. Taghdisi . Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomater., 2021, 123: 110
CrossRef ADS Google scholar
[50]
J. Mehringer , T. M. Do , D. Touraud , M. Hohenschutz , A. Khoshsima , D. Horinek , W. Kunz . Hofmeister versus Neuberg: is ATP really a biological hydrotrope. Cell Rep. Phys. Sci., 2021, 2(2): 100343
CrossRef ADS Google scholar
[51]
S. C. Xu , C. Zhang , S. Z. Jiang , G. D. Hu , X. Y. Li , Y. Zou , H. P. Liu , J. Li , Z. H. Li , X. X. Wang , M. Z. Li , J. H. Wang . Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP. Sens. Actuators B Chem., 2019, 284: 125
CrossRef ADS Google scholar
[52]
C. M. Yu , X. M. Chang , J. Liu , L. P. Ding , J. X. Peng , Y. Fang . Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates. ACS Appl. Mater. Interfaces., 2015, 7(20): 10718
CrossRef ADS Google scholar
[53]
W.W. YueS.Z. JiangS.C. XuF.Z. HuangC.J. Bai, Fabrication of capacitive type biosensor based on CVD grown grapheme, Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, China, 2013, pp 711–714
[54]
S. Xu , B. Man , S. Jiang , W. Yue , C. Yang , M. Liu , C. Chen , C. Zhang . Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate. Nanotechnology, 2014, 25(16): 165702
CrossRef ADS Google scholar
[55]
P. Snapp , M. Heiranian , M. T. Hwang , R. Bashir , N. R. Aluru , S. W. Nam . Current understanding and emerging applications of 3D crumpling mediated 2D material−liquid interactions. Curr. Opin. Solin. St M., 2020, 24(3): 100836
CrossRef ADS Google scholar
[56]
K. Shoorideh , C. O. Chui . On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Natl. Acad. Sci. USA, 2014, 111(14): 5111
CrossRef ADS Google scholar
[57]
D. Y. Qi , C. Wang , Y. C. Gao , H. W. Li , Y. Q. Wu . Heteroatom doping and supramolecular assembly promoted copper nanoclusters to be a stable & high fluorescence sensor for trace amounts of ATP determination. Sens. Actuators B Chem., 2022, 358: 131469
CrossRef ADS Google scholar
[58]
M. Q. Zheng , Y. F. Kang , D. Liu , C. Y. Li , B. Zheng , H. W. Tang . Detection of ATP from “fluorescence” to “enhanced fluorescence” based on metal-enhanced fluorescence triggered by aptamer nanoswitch. Sens. Actuators B Chem., 2020, 319: 128263
CrossRef ADS Google scholar
[59]
Y.PengD.X. LiR.YuanY.Xiang, A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons, Biosens. Bioelectron. 105, 1 (2018)
[60]
S. Li , X. T. Zhao , X. T. Yu , Y. Q. Wan , M. Y. Yin , W. W. Zhang , B. Q. Cao , H. Wang . Fe3O4 nanozymes with Aptamer-Tuned catalysis for selective colorimetric analysis of ATP in blood. Anal. Chem., 2019, 91(22): 14737
CrossRef ADS Google scholar
[61]
H.Y. ZhaoL.N. DouJ.J. RenM.CuiN.LiX.P. JiX.T. LiuC.Zhang, MOF-derived porous Co3O4 coupled with AuNPs and nucleic acids as electrocatalysis signal probe for sensitive electrochemical aptasensing of adenosine triphosphate, Sens. Actuators B Chem. 362, 131753 (2022)
[62]
X. Li , J. M. Yang , J. Q. Xie , B. Y. Jiang , R. Yuan , Y. Xiang . Cascaded signal amplification via target-triggered formation of aptazyme for sensitive electrochemical detection of ATP. Biosens. Bioelectron., 2018, 102: 296
CrossRef ADS Google scholar
[63]
G. E. Fenoy , E. Piccinini , W. Knoll , W. A. Marmisolle , O. Azzaroni . The effect of Amino–Phosphate interactions on the biosensing performance of enzymatic graphene field-effect transistors. Anal. Chem., 2022, 94(40): 13820
CrossRef ADS Google scholar

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1281-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1281-7.

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Nos. 12274058 and 12104085), Taishan Scholars Program of Shandong Province (No. tsqn201812104), the Natural Science Foundation of Shandong Province (No. ZR2021QA008), the Qingchuang Science and Technology Plan of Shandong Province (No. 2019KJJ017), and the project of the Talent Introduction of Dezhou University (No. 2021xjrc101).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6034 KB)

Accesses

Citations

Detail

Sections
Recommended

/