Anisotropic phonon thermal transport in two-dimensional layered materials

Yuxin Cai, Muhammad Faizan, Huimin Mu, Yilin Zhang, Hongshuai Zou, Hong Jian Zhao, Yuhao Fu, Lijun Zhang

PDF(4285 KB)
PDF(4285 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43303. DOI: 10.1007/s11467-023-1276-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Anisotropic phonon thermal transport in two-dimensional layered materials

Author information +
History +

Abstract

Two-dimensional layered materials (2DLMs) have attracted growing attention in optoelectronic devices due to their intriguing anisotropic physical properties. Different members of 2DLMs exhibit unique anisotropic electrical, optical, and thermal properties, fundamentally related to their crystal structure. Among them, directional heat transfer plays a vital role in the thermal management of electronic devices. Here, we use density functional theory calculations to investigate the thermal transport properties of representative layered materials: β-InSe, γ-InSe, MoS2, and h-BN. We found that the lattice thermal conductivities of β-InSe, γ-InSe, MoS2, and h-BN display diverse anisotropic behaviors with anisotropy ratios of 10.4, 9.4, 64.9, and 107.7, respectively. The analysis of the phonon modes further indicates that the phonon group velocity is responsible for the anisotropy of thermal transport. Furthermore, the low lattice thermal conductivity of the layered InSe mainly comes from low phonon group velocity and atomic masses. Our findings provide a fundamental physical understanding of the anisotropic thermal transport in layered materials. We hope this study could inspire the advancement of 2DLMs thermal management applications in next-generation integrated electronic and optoelectronic devices.

Graphical abstract

Keywords

thermal conductivity / two-dimensional layered materials / first-principles calculation / Boltzmann transport theory

Cite this article

Download citation ▾
Yuxin Cai, Muhammad Faizan, Huimin Mu, Yilin Zhang, Hongshuai Zou, Hong Jian Zhao, Yuhao Fu, Lijun Zhang. Anisotropic phonon thermal transport in two-dimensional layered materials. Front. Phys., 2023, 18(4): 43303 https://doi.org/10.1007/s11467-023-1276-4

References

[1]
A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 2007, 6(3): 183
CrossRef ADS Google scholar
[2]
J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth. The structure of suspended graphene sheets. Nature, 2007, 446(7131): 60
CrossRef ADS Google scholar
[3]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[4]
E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, A. Stesmans. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res., 2012, 5(1): 43
CrossRef ADS Google scholar
[5]
D. Chiappe, E. Scalise, E. Cinquanta, C. Grazianetti, B. van den Broek, M. Fanciulli, M. Houssa, A. Molle. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater., 2014, 26(13): 2096
CrossRef ADS Google scholar
[6]
Z. Yang, W. Jie, C. H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S. P. Lau, J. Hao. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano, 2017, 11(4): 4225
CrossRef ADS Google scholar
[7]
K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang. Two-dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C, 2017, 5(46): 11992
CrossRef ADS Google scholar
[8]
L. Wu, J. Shi, Z. Zhou, J. Yan, A. Wang, C. Bian, J. Ma, R. Ma, H. Liu, J. Chen, Y. Huang, W. Zhou, L. Bao, M. Ouyang, S. T. Pantelides, H. J. Gao. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Res., 2020, 13(4): 1127
CrossRef ADS Google scholar
[9]
G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynskyi, C. J. Mellor, P. H. Beton, L. Eaves, K. S. Novoselov, Z. D. Kovalyuk, E. E. Vdovin, A. J. Marsden, N. R. Wilson, A. Patanè. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv. Mater., 2015, 27(25): 3760
CrossRef ADS Google scholar
[10]
D. Buckley, Z. R. Kudrynskyi, N. Balakrishnan, T. Vincent, D. Mazumder, E. Castanon, Z. D. Kovalyuk, O. Kolosov, O. Kazakova, A. Tzalenchuk, A. Patanè. Anomalous low thermal conductivity of atomically thin InSe probed by scanning thermal microscopy. Adv. Funct. Mater., 2021, 31(11): 2008967
CrossRef ADS Google scholar
[11]
H. Arora, Y. Jung, T. Venanzi, K. Watanabe, T. Taniguchi, R. Hübner, H. Schneider, M. Helm, J. C. Hone, A. Erbe. Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties. ACS Appl. Mater. Interfaces, 2019, 11(46): 43480
CrossRef ADS Google scholar
[12]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
CrossRef ADS Google scholar
[13]
M. Brotons-Gisbert, D. Andres-Penares, J. Suh, F. Hidalgo, R. Abargues, P. J. Rodriguez-Canto, A. Segura, A. Cros, G. Tobias, E. Canadell, P. Ordejón, J. Wu, J. P. Martínez-Pastor, J. F. Sánchez-Royo. Nanotexturing to enhance photoluminescent response of atomically thin indium selenide with highly tunable band gap. Nano Lett., 2016, 16(5): 3221
CrossRef ADS Google scholar
[14]
Y. Y. Hui, X. Liu, W. Jie, N. Y. Chan, J. Hao, Y. T. Hsu, L. J. Li, W. Guo, S. P. Lau. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano, 2013, 7(8): 7126
CrossRef ADS Google scholar
[15]
S.MoonJ. KimJ.ParkS.ImJ.Kim I.HwangJ. K. Kim, Hexagonal boron nitride for next‐generation photonics and electronics, Adv. Mater. 2204161 (2022)
[16]
M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng, L. Zhang, W. Liao. Synthesis of two‐dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat, 2021, 3(4): 362
CrossRef ADS Google scholar
[17]
S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, P. M. Ajayan. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 2014, 8(2): 1263
CrossRef ADS Google scholar
[18]
D. J. Late, B. Liu, J. Luo, A. Yan, H. S. S. R. Matte, M. Grayson, C. N. R. Rao, V. P. Dravid. GaS and GaSe ultrathin layer transistors. Adv. Mater., 2012, 24(26): 3549
CrossRef ADS Google scholar
[19]
P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6(7): 5988
CrossRef ADS Google scholar
[20]
J. Xie, L. Zhang. Optical emission enhancement of bent InSe thin films. Sci. China Inf. Sci., 2021, 64(4): 140405
CrossRef ADS Google scholar
[21]
T. Hu, H. Zhang, J. Wang, Z. Li, M. Hu, J. Tan, P. Hou, F. Li, X. Wang. Anisotropic electronic conduction in stacked two-dimensional titanium carbide. Sci. Rep., 2015, 5(1): 16329
CrossRef ADS Google scholar
[22]
M. J. Hamer, J. Zultak, A. V. Tyurnina, V. Zólyomi, D. Terry, A. Barinov, A. Garner, J. Donoghue, A. P. Rooney, V. Kandyba, A. Giampietri, A. Graham, N. Teutsch, X. Xia, M. Koperski, S. J. Haigh, V. I. Fal’ko, R. V. Gorbachev, N. R. Wilson. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano, 2019, 13(2): 2136
CrossRef ADS Google scholar
[23]
T. V. Shubina, W. Desrat, M. Moret, A. Tiberj, O. Briot, V. Yu. Davydov, A. V. Platonov, M. A. Semina, B. Gil. InSe as a case between 3D and 2D layered crystals for excitons. Nat. Commun., 2019, 10(1): 3479
CrossRef ADS Google scholar
[24]
T. J. Williams, A. A. Aczel, M. D. Lumsden, S. E. Nagler, M. B. Stone, J. Q. Yan, D. Mandrus. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Phys. Rev. B, 2015, 92(14): 144404
CrossRef ADS Google scholar
[25]
A. Rai, V. K. Sangwan, J. T. Gish, M. C. Hersam, D. G. Cahill. Anisotropic thermal conductivity of layered indium selenide. Appl. Phys. Lett., 2021, 118(7): 073101
CrossRef ADS Google scholar
[26]
P. Jiang, X. Qian, R. Yang, L. Lindsay. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater., 2018, 2(6): 064005
CrossRef ADS Google scholar
[27]
P. Jiang, X. Qian, X. Gu, R. Yang, Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W = S. Se) using time‐domain thermoreflectance. Adv. Mater., 2017, 29(36): 1701068
CrossRef ADS Google scholar
[28]
N. Yang, F. Pei, J. Dou, Y. Zhao, Z. Huang, Y. Ma, S. Ma, C. Wang, X. Zhang, H. Wang, C. Zhu, Y. Bai, H. Zhou, T. Song, Y. Chen, Q. Chen. Improving heat transfer enables durable perovskite solar cells. Adv. Energy Mater., 2022, 12(24): 2200869
CrossRef ADS Google scholar
[29]
S. Chandra, P. Dutta, K. Biswas. High-performance thermoelectrics based on solution-grown SnSe nanostructures. ACS Nano, 2022, 16(1): 7
CrossRef ADS Google scholar
[30]
J. D. G. Greener, E. de Lima Savi, A. V. Akimov, S. Raetz, Z. Kudrynskyi, Z. D. Kovalyuk, N. Chigarev, A. Kent, A. Patané, V. Gusev. High-frequency elastic coupling at the interface of van der Waals nanolayers imaged by picosecond ultrasonics. ACS Nano, 2019, 13(10): 11530
CrossRef ADS Google scholar
[31]
J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, W. Shi. Investigation of graphene supported terahertz elliptical metamaterials. Physica E, 2020, 124: 114309
CrossRef ADS Google scholar
[32]
J. Leng, J. Peng, A. Jin, D. Cao, D. Liu, X. He, F. Lin, F. Liu. Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 2022, 146: 107570
CrossRef ADS Google scholar
[33]
X.HeF.Lin F.LiuW. Shi, 3D Dirac semimetals supported tunable terahertz BIC metamaterials, Nanophotonics 11(21), 4705 (2022)
[34]
X. He, W. Cao. Tunable terahertz hybrid metamaterials supported by 3D Dirac semimetals. Opt. Mater. Express, 2023, 13(2): 413
CrossRef ADS Google scholar
[35]
J. Yang, C. Liu, H. Xie, W. Yu. Anisotropic heat transfer properties of two-dimensional materials. Nanotechnology, 2021, 32(16): 162001
CrossRef ADS Google scholar
[36]
S. E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh, P. Poddar, A. Ray, C. Park, E. Fransson, Y. Zhong, D. A. Muller, P. Erhart, D. G. Cahill, J. Park. Extremely anisotropic van der Waals thermal conductors. Nature, 2021, 597(7878): 660
CrossRef ADS Google scholar
[37]
S. Chen, A. Sood, E. Pop, K. E. Goodson, D. Donadio. Strongly tunable anisotropic thermal transport in MoS2 by strain and lithium intercalation: First-principles calculations. 2D Mater., 2019, 6(2): 025033
CrossRef ADS Google scholar
[38]
P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[39]
G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[40]
J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[41]
J. Klimeš, D. R. Bowler, A. Michaelides. Chemical accuracy for the van der Waals density functional. J. Phys. :Condens. Matter, 2010, 22(2): 022201
CrossRef ADS Google scholar
[42]
M. Omini, A. Sparavigna. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B, 1996, 53(14): 9064
CrossRef ADS Google scholar
[43]
D. A. Broido, M. Malorny, G. Birner, N. Mingo, D. A. Stewart. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett., 2007, 91(23): 231922
CrossRef ADS Google scholar
[44]
A.WardD. A. BroidoD.A. StewartG.Deinzer, Ab-initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80(12), 125203 (2009)
[45]
W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, N. Mingo. Thermal conductivity of bulk and nanowire Mg2SixSn1-x alloys from first principles. Phys. Rev. B, 2012, 86(17): 174307
CrossRef ADS Google scholar
[46]
W. Li, N. Mingo. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys. Rev. B, 2015, 91(14): 144304
CrossRef ADS Google scholar
[47]
A. Togo, I. Tanaka. First principles phonon calculations in materials science. Scr. Mater., 2015, 108: 1
CrossRef ADS Google scholar
[48]
P.GiannozziS. de GironcoliP.PavoneS.Baroni, Ab-initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43(9), 7231 (1991)
[49]
W. Li, J. Carrete, N. A. Katcho, N. Mingo. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun., 2014, 185(6): 1747
CrossRef ADS Google scholar
[50]
B. Niu, L. Zhong, W. Hao, Z. Yang, X. Duan, D. Cai, P. He, D. Jia, S. Li, Y. Zhou. First-principles study of the anisotropic thermal expansion and thermal transport properties in h-BN. Sci. China Mater., 2021, 64(4): 953
CrossRef ADS Google scholar
[51]
W. Wan, S. Zhao, Y. Ge, Y. Liu. Phonon and electron transport in Janus monolayers based on InSe. J. Phys. :Condens. Matter, 2019, 31(43): 435501
CrossRef ADS Google scholar
[52]
Y. Sun, S. Luo, X. G. Zhao, K. Biswas, S. L. Li, L. Zhang. InSe: A two-dimensional material with strong interlayer coupling. Nanoscale, 2018, 10(17): 7991
CrossRef ADS Google scholar
[53]
Y. Sun, Y. Li, T. Li, K. Biswas, A. Patanè, L. Zhang. New polymorphs of 2D indium selenide with enhanced electronic properties. Adv. Funct. Mater., 2020, 30(31): 2001920
CrossRef ADS Google scholar
[54]
J. Q. Hu, X. H. Shi, S. Q. Wu, K. M. Ho, Z. Z. Zhu. Dependence of electronic and optical properties of MoS2 multilayers on the interlayer coupling and van Hove singularity. Nanoscale Res. Lett., 2019, 14(1): 288
CrossRef ADS Google scholar
[55]
J. Liu, G. M. Choi, D. G. Cahill. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys., 2014, 116(23): 233107
CrossRef ADS Google scholar
[56]
W. Li, N. Mingo. Thermal conductivity of fully filled skutterudites: Role of the filler. Phys. Rev. B, 2014, 89(18): 184304
CrossRef ADS Google scholar
[57]
S. K. S. S. Karthikeyan, P. Santhoshkumar, Y. C. Joe, S. H. Kang, Y. N. Jo, H. S. Kang, C. W. Lee. Understanding of the elastic constants, energetics, and bonding in dicalcium silicate using first-principles calculations. J. Phys. Chem. C, 2018, 122(42): 24235
CrossRef ADS Google scholar
[58]
K. Yuan, X. Zhang, Z. Chang, Z. Yang, D. Tang. Pressure-induced anisotropic to isotropic thermal transport and promising thermoelectric performance in layered InSe. ACS Appl. Energy Mater., 2022, 5(9): 10690
CrossRef ADS Google scholar
[59]
W. Ren, Y. Ouyang, P. Jiang, C. Yu, J. He, J. Chen. The impact of interlayer rotation on thermal transport across graphene/hexagonal boron nitride van der Waals heterostructure. Nano Lett., 2021, 21(6): 2634
CrossRef ADS Google scholar
[60]
A. Y. Nobakht, S. Shin. Anisotropic control of thermal transport in graphene/Si heterostructures. J. Appl. Phys., 2016, 120(22): 225111
CrossRef ADS Google scholar
[61]
Y. Ni, Y. A. Kosevich, S. Xiong, Y. Chalopin, S. Volz. Substrate-induced cross-plane thermal propagative modes in few-layer graphene. Phys. Rev. B, 2014, 89(20): 205413
CrossRef ADS Google scholar

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/10.1007/s11467-023-1276-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1276-4. Convergence tests of lattice thermal conductivity and phonon dispersion, thermal transport coefficients and crystal structure of γ-InSe, normalized cumulative lattice thermal conductivity, optimized lattice parameters, born effective charge and dielectric constant, lattice thermal conductivity at 300 K, elastic constant and mass per unit area.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402502), and the National Natural Science Foundation of China (Grant Nos. 12004131, 22090044, and 62125402). Calculations were performed in part at the high-performance computing center of Jilin University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4285 KB)

Accesses

Citations

Detail

Sections
Recommended

/