Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs

Shuang-Shuang Kong, Wei-Kai Liu, Xiao-Xia Yu, Ya-Lin Li, Liu-Zhu Yang, Yun Ma, Xiao-Yong Fang

PDF(7738 KB)
PDF(7738 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43302. DOI: 10.1007/s11467-023-1263-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs

Author information +
History +

Abstract

Silicon carbide nanosheets (SiCNSs) have a very broad application prospect in the field of new two-dimensional (2D) materials. In this paper, the interlayer interaction mechanism of bilayer SiCNSs (BL-SiCNSs) and its effect on optical properties are studied by first principles. Taking the charge and dipole moment of the layers as parameters, an interlayer coupling model is constructed which is more convenient to control the photoelectric properties. The results show that the stronger the interlayer coupling, the smaller the band gap of BL-SiCNSs. The interlayer coupling also changes the number of absorption peaks and causes the red or blue shift of absorption peaks. The strong interlayer coupling can produce obvious dispersion and regulate the optical transmission properties. The larger the interlayer distance, the smaller the permittivity in the vertical direction. However, the permittivity of the parallel direction is negative in the range of 150-300 nm, showing obvious metallicity. It is expected that the results will provide a meaningful theoretical basis for further study of SiCNSs optoelectronic devices.

Graphical abstract

Keywords

SiC nanosheets / bilayer nanosheets / interlayer coupling model / bandgap structure / optical properties

Cite this article

Download citation ▾
Shuang-Shuang Kong, Wei-Kai Liu, Xiao-Xia Yu, Ya-Lin Li, Liu-Zhu Yang, Yun Ma, Xiao-Yong Fang. Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs. Front. Phys., 2023, 18(4): 43302 https://doi.org/10.1007/s11467-023-1263-9

References

[1]
J. J. Wang , X. Y. Fang , G. Y. Feng , W. L. Song , Z. L. Hou , H. B. Jin , J. Yuan , M. S. Cao . Scattering mechanisms and anomalous conductivity of heavily N-doped 3C-SiC in ultraviolet region. Phys. Lett. A, 2010, 374(22): 2286
CrossRef ADS Google scholar
[2]
X. L. Feng , M. H. Matheny , C. A. Zorman , M. Mehregany , M. L. Roukes . Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett., 2010, 10(8): 2891
CrossRef ADS Google scholar
[3]
X. Y. Fang , K. Wang , Z. L. Hou , H. B. Jin , Y. Q. Li , M. S. Cao . Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region. J. Phys. :Condens. Matter, 2012, 24(44): 445802
CrossRef ADS Google scholar
[4]
R. Maboudian , C. Carraro , D. G. Senesky , C. S. Roper . Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A, 2013, 31(5): 050805
CrossRef ADS Google scholar
[5]
H.Okumura, A roadmap for future wide bandgap semiconductor power electronics, MRS Bull. 40(5), 439 (2015)
[6]
B.WhitakerA.BarkleyZ.ColeB.PassmoreD.MartinT.R. McNuttA.B. LostetterJ.S. LeeK.Shiozaki, A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices, IEEE Trans. Power Electron. 29(5), 2606 (2014)
[7]
H. Ou , Y. Ou , A. Argyraki , S. Schimmel , M. Kaiser , P. Wellmann , M. K. Linnarsson , V. Jokubavicius , J. Sun , R. Liljedahl , M. Syväjärvi . Advances in wide bandgap SiC for optoelectronics. Eur. Phys. J. B, 2014, 87(3): 58
CrossRef ADS Google scholar
[8]
G. Cheng , T. H. Chang , Q. Qin , H. Huang , Y. Zhu . Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett., 2014, 14(2): 754
CrossRef ADS Google scholar
[9]
M. Awais , H. Mousa , K. Teker . Effect of pH on transport characteristics of silicon carbide nanowire field-effect transistor (SiCNW-FET). J. Mater. Sci. Mater. Electron., 2021, 32(3): 3431
CrossRef ADS Google scholar
[10]
X. Zhang , J. Wang , Z. Yang , X. Tang , Y. Yue . Strong structural occupation ratio effect on mechanical properties of silicon carbide nanowires. Sci. Rep., 2020, 10(1): 11386
CrossRef ADS Google scholar
[11]
S. Li , J. Li , Q. Su , X. Liu , H. Zhao , M. Ding . Enhanced n-type conductivity of 6H-SiC nanowires by nitrogen doping. Micro & Nano Lett., 2019, 14(9): 999
CrossRef ADS Google scholar
[12]
H. Gao , H. Wang , M. Niu , L. Su , X. Fan , J. Wen , Y. Wei . Oxidation simulation study of silicon carbide nanowires: A carbon-rich interface state. Appl. Surf. Sci., 2019, 493: 882
CrossRef ADS Google scholar
[13]
Y. H. Jia , P. Gong , S. L. Li , W. D. Ma , X. Y. Fang , Y. Y. Yang , M. S. Cao . Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A, 2020, 384(4): 126106
CrossRef ADS Google scholar
[14]
P.NematollahiM.D. Esrafili, A DFT study on the N2O reduction by CO molecule over silicon carbide nanotubes and nanosheets, RSC Adv. 6(64), 59091 (2016)
[15]
R. S. Singh , A. Solanki . Modulation of electronic properties of silicon carbide nanotubes via sulphur-doping: An ab initio study. Phys. Lett. A, 2016, 380(11−12): 1201
CrossRef ADS Google scholar
[16]
W.Q. LinF.LiG.H. ChenS.T. XiaoL.Y. WangQ.Wang, A study on the adsorptions of SO2 on pristine and phosphorus-doped silicon carbide nanotubes as potential gas sensors, Ceram. Int. 46(16), 25171 (2020)
[17]
Y. Y. Yang , P. Gong , W. D. Ma , R. Hao , X. Y. Fang . Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin. Phys. B, 2021, 30(6): 067803
CrossRef ADS Google scholar
[18]
P. Gong , Y. Y. Yang , W. D. Ma , X. Y. Fang , X. L. Jing , Y. H. Jia , M. S. Cao . Transport and recombination properties of group-III doped SiCNTs. Physica E, 2021, 128: 114578
CrossRef ADS Google scholar
[19]
J. M. Zhang , F. L. Zheng , Y. Zhang , V. Ji . First-principles study on electronic properties of SiC nanoribbon. J. Mater. Sci., 2010, 45(12): 3259
CrossRef ADS Google scholar
[20]
Y. Z. Li , M. Y. Sun , X. X. Yu , W. K. Liu , S. S. Kong , Y. L. Li , X. Y. Fang . First-principles study on optical properties of group-III doped SiCNRs. Mater. Today Commun., 2022, 32: 104179
CrossRef ADS Google scholar
[21]
Y. Z. Li , M. Y. Sun , X. X. Yu , W. K. Liu , S. S. Kong , Y. L. Li , X. Y. Fang . Theoretical study on transport properties of group-III doped SiCNRs. Eur. Phys. J. Plus, 2022, 137(9): 995
CrossRef ADS Google scholar
[22]
E. Bekaroglu , M. Topsakal , S. Cahangirov , S. Ciraci . First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B, 2010, 81(7): 075433
CrossRef ADS Google scholar
[23]
H. L. Zhu , Z. F. Hong , C. J. Zhou , Q. H. Wu , T. C. Zheng , L. Yang , S. Q. Lan , W. F. Yang . Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions. Front. Phys., 2023, 18(1): 13301
CrossRef ADS Google scholar
[24]
S. S. Lin . Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C, 2012, 116(6): 3951
CrossRef ADS Google scholar
[25]
L.SunB.WangY.Wang, A novel silicon carbide nanosheet for high-performance humidity sensor, Adv. Mater. Interfaces 5(6), 1701300 (2018)
[26]
M. Houmad , O. Dakir , A. Abbassi , A. Benyoussef , A. El Kenz , H. Ez-Zahraouy . Optical properties of SiC nanosheet. Optik (Stuttg.), 2016, 127(4): 1867
CrossRef ADS Google scholar
[27]
X.LinS.LinY.XuA.A. HakroT.HasanB.ZhangB.YuJ.LuoE.LiH.Chen, Ab initio study of electronic and optical behavior of two-dimensional silicon carbide, J. Mater. Chem. C 1(11), 2131 (2013)
[28]
Q. Chen , Y. Jiang , Y. Wang , H. Li , C. Yu , J. Cui , Y. Qin , J. Sun , J. Yan , H. Zheng , D. Chen , J. Wu , Y. Zhang , Y. Wu . Enhanced supercapacitive performance of novel ultrathin sic nanosheets directly by liquid phase exfoliation. Inorg. Chem. Commun., 2019, 106(6): 174
CrossRef ADS Google scholar
[29]
L. Sun , B. Wang , Y. Wang . High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi-heterojunctions. ACS Appl. Mater. Interfaces, 2020, 12(19): 21808
CrossRef ADS Google scholar
[30]
W. K. Liu , S. S. Kong , X. X. Yu , Y. L. Li , L. Z. Yang , Y. Ma , X. Y. Fang . Interlayer coupling, electronic and optical properties of few-layer silicon carbide nanosheets. Mater. Today Commun., 2023, 34: 105030
CrossRef ADS Google scholar
[31]
P. N. Nirmalraj , T. Lutz , S. Kumar , G. S. Duesberg , J. J. Boland . Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett., 2011, 11(1): 16
CrossRef ADS Google scholar
[32]
X. Y. Fang , X. X. Yu , H. M. Zheng , H. B. Jin , L. Wang , M. S. Cao . Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A, 2015, 379(37): 2245
CrossRef ADS Google scholar
[33]
J. Song , H. Liu , D. J. Henry . Layer effects on electronic structures of multi-walled armchair silicon carbide nanotubes. Comput. Mater. Sci., 2016, 125: 117
CrossRef ADS Google scholar
[34]
H. Cheng , J. C. Zheng . Ab initio study of anisotropic mechanical and electronic properties of strained carbon−nitride nanosheet with interlayer bonding. Front. Phys., 2021, 16(4): 43505
CrossRef ADS Google scholar
[35]
P. Gong , Y. Z. Li , M. Y. Sun , X. Y. Fang , X. L. Jing , M. S. Cao . Effect of inter-wall coupling on the electronic structure and optical properties of group-III doped SiCNTs. Physica B, 2021, 620(4): 413276
CrossRef ADS Google scholar
[36]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[37]
A. Tkatchenko , M. Scheffler . Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett., 2009, 102(7): 073005
CrossRef ADS Google scholar
[38]
Y. Z. Li , M. Y. Sun , X. X. Yu , W. K. Liu , S. S. Kong , P. Gong , X. Y. Fang . Comparative study on the optical properties of group-V doped SiC nanoribbons. Mater. Sci. Eng. B, 2022, 284: 115896
CrossRef ADS Google scholar
[39]
M. Y. Sun , Y. Z. Li , X. X. Yu , W. K. Liu , S. S. Kong , P. Gong , X. Y. Fang . Comparative study on transport and optical properties of silicon carbide nanoribbons with different terminations. Eur. Phys. J. B, 2022, 95(9): 142
CrossRef ADS Google scholar
[40]
S. Kitipornchai , X. Q. He , K. M. Liew . Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B, 2005, 72(7): 075443
CrossRef ADS Google scholar
[41]
G. Mie . Zur kinetischen theorie der einatomigen Körper. Ann. Phys., 1903, 316(8): 657
CrossRef ADS Google scholar
[42]
A. N. Kolmogorov , V. H. Crespi . Smoothest bearings: Interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett., 2000, 85(22): 4727
CrossRef ADS Google scholar
[43]
P. Lou , J. Y. Lee . Electrical control of magnetization in narrow zigzag silicon carbon nanoribbons. J. Phys. Chem. C, 2009, 113(50): 21213
CrossRef ADS Google scholar
[44]
A. N. Kolmogorov , V. H. Crespi . Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B, 2005, 71(23): 235415
CrossRef ADS Google scholar
[45]
D. L. Wood , J. S. Tauc . Weak absorption tails in amorphous semiconductors. Phys. Rev. B, 1972, 5(8): 3144
CrossRef ADS Google scholar
[46]
T. Kamiya , S. Aiba , M. Miyakawa , K. Nomura , S. Matsuishi , K. Hayashi , K. Ueda , M. Hirano , H. Hosono . Field-induced current modulation in nanoporous semiconductor, electron-doped 12CaO∙7Al2O3. Chem. Mater., 2005, 17(25): 6311
CrossRef ADS Google scholar
[47]
W. D. Ma , W. K. Liu , P. Gong , Y. H. Jia , Y. Y. Yang , X. Y. Fang . Effects of different valence atoms on surface passivation of silicon carbide nanowires. Int. J. Mod. Phys. B, 2021, 35(20): 2150207
CrossRef ADS Google scholar

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/10.1007/s11467-023-1263-9 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1263-9.

Acknowledgements

This work was supported by Hebei Natural Science Foundation (Grant No. A2021203030) and the National Natural Science Foundation of China (Grant No. 11574261).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7738 KB)

Accesses

Citations

Detail

Sections
Recommended

/