Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator

Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan

PDF(4925 KB)
PDF(4925 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43301. DOI: 10.1007/s11467-023-1262-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator

Author information +
History +

Abstract

Dual topological insulator (DTI), which simultaneously hosts topological insulator (TI) and topological crystalline insulator (TCI) phases, has attracted extensive attention since it has a better robustness of topological nature and broad application prospects in spintronics. However, the realization of DTI phase in two-dimensional (2D) system is extremely scarce. By first-principles calculations, we predict that the 2D rectangular bismuth (R−Bi) bilayer is a novel DTI, featured by \textcolor [RGB ]12,108,100Z2 topological invariant \textcolor[ RGB] 12,108,100Z2 = 1, mirror Chern number CM = −1, and metallic edge states within the bulk band gap. More interestingly, the TCI phase in bilayer is protected by horizontal glide mirror symmetries, rather than the usual mirror symmetry. The bulk band gap can be effectively tuned by vertical electric field and strain. Besides, the electric field can trigger the transition between TI and metallic phases for the bilayer, accompanied by the annihilation of TCI phase. On this basis, a topological field effect transistor is proposed, which can rapidly manipulate spin and charge carriers via electric field. The KBr(110) surface is demonstrated as an ideal substrate for the deposition of bilayer. These findings provide not only a new strategy for exploiting 2D DTI, but also a promising candidate for spintronic applications.

Graphical abstract

Keywords

dual topological insulator / Bi bilayer / glide mirror symmetry / first-principles calculations

Cite this article

Download citation ▾
Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator. Front. Phys., 2023, 18(4): 43301 https://doi.org/10.1007/s11467-023-1262-x

References

[1]
J. E. Moore. The birth of topological insulators. Nature, 2010, 464(7286): 194
CrossRef ADS Google scholar
[2]
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[3]
L. Fu. Topological crystalline insulators. Phys. Rev. Lett., 2011, 106(10): 106802
CrossRef ADS Google scholar
[4]
Y. Ando. Topological insulator materials. J. Phys. Soc. Jpn., 2013, 82(10): 102001
CrossRef ADS Google scholar
[5]
Y. Ando, L. Fu. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 361
CrossRef ADS Google scholar
[6]
C. Niu, P. M. Buhl, G. Bihlmayer, D. Wortmann, Y. Dai, S. Blügel, Y. Mokrousov. Robust dual topological character with spin-valley polarization in a monolayer of the Dirac semimetal Na3Bi. Phys. Rev. B, 2017, 95(7): 075404
CrossRef ADS Google scholar
[7]
N. Mao, X. Hu, C. Niu, B. Huang, Y. Dai. Dual topological insulator and insulator−semimetal transition in mirror-symmetric honeycomb materials. Phys. Rev. B, 2019, 100(20): 205116
CrossRef ADS Google scholar
[8]
N. Avraham, A. Kumar Nayak, A. Steinbok, A. Norris, H. Fu, Y. Sun, Y. Qi, L. Pan, A. Isaeva, A. Zeugner, C. Felser, B. Yan, H. Beidenkopf. Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI. Nat. Mater., 2020, 19(6): 610
CrossRef ADS Google scholar
[9]
I. Cucchi, A. Marrazzo, E. Cappelli, S. Riccò, F. Y. Bruno, S. Lisi, M. Hoesch, T. K. Kim, C. Cacho, C. Besnard, E. Giannini, N. Marzari, M. Gibertini, F. Baumberger, A. Tamai. Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Phys. Rev. Lett., 2020, 124(10): 106402
CrossRef ADS Google scholar
[10]
M. Eschbach, M. Lanius, C. Niu, E. Młyńczak, P. Gospodarič, J. Kellner, P. Schüffelgen, M. Gehlmann, S. Döring, E. Neumann, M. Luysberg, G. Mussler, L. Plucinski, M. Morgenstern, D. Grützmacher, G. Bihlmayer, S. Blügel, C. M. Schneider. Bi1Te1 is a dual topological insulator. Nat. Commun., 2017, 8(1): 14976
CrossRef ADS Google scholar
[11]
J. I. Facio, S. K. Das, Y. Zhang, K. Koepernik, J. van den Brink, I. C. Fulga. Dual topology in jacutingaite Pt2HgSe3. Phys. Rev. Mater., 2019, 3(7): 074202
CrossRef ADS Google scholar
[12]
H. Lee, Y. G. Kang, M. C. Jung, M. J. Han, K. J. Chang. Robust dual topological insulator phase in NaZnBi. NPG Asia Mater., 2022, 14(1): 36
CrossRef ADS Google scholar
[13]
I. Matsuda, K. Yaji, A. A. Taskin, M. D’angelo, R. Yukawa, Y. Ohtsubo, P. Le Fèvre, F. Bertran, S. Yoshizawa, A. Taleb-Ibrahimi, A. Kakizaki, Y. Ando, F. Komori. Surface state of the dual topological insulator Bi0.91Sb0.09(11 2¯). Physica B, 2017, 516: 100
CrossRef ADS Google scholar
[14]
T. Rauch, M. Flieger, J. Henk, I. Mertig, A. Ernst. Dual topological character of chalcogenides: Theory for Bi2Te3. Phys. Rev. Lett., 2014, 112(1): 016802
CrossRef ADS Google scholar
[15]
J. C. Y. Teo, L. Fu, C. L. Kane. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx. Phys. Rev. B, 2008, 78(4): 045426
CrossRef ADS Google scholar
[16]
C. Fang, L. Fu. New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic. Phys. Rev. B, 2015, 91(16): 161105
CrossRef ADS Google scholar
[17]
H. Kim, S. Murakami. Glide-symmetric topological crystalline insulator phase in a nonprimitive lattice. Phys. Rev. B, 2020, 102(19): 195202
CrossRef ADS Google scholar
[18]
J. Ma, C. Yi, B. Lv, Z. J. Wang, S. Nie, L. Wang, L. Kong, Y. Huang, P. Richard, P. Zhang, K. Yaji, K. Kuroda, S. Shin, H. Weng, B. A. Bernevig, Y. Shi, T. Qian, H. Ding. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv., 2017, 3(5): e1602415
CrossRef ADS Google scholar
[19]
Z. Wang, A. Alexandradinata, R. J. Cava, B. A. Bernevig. Hourglass fermions. Nature, 2016, 532(7598): 189
CrossRef ADS Google scholar
[20]
Y. L. Chen, M. Kanou, Z. K. Liu, H. J. Zhang, J. A. Sobota, D. Leuenberger, S. K. Mo, B. Zhou, S. L. Yang, P. S. Kirchmann, D. H. Lu, R. G. Moore, Z. Hussain, Z. X. Shen, X. L. Qi, T. Sasagawa. Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nat. Phys., 2013, 9(11): 704
CrossRef ADS Google scholar
[21]
B. Yan, M. Jansen, C. Felser. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys., 2013, 9(11): 709
CrossRef ADS Google scholar
[22]
H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 438
CrossRef ADS Google scholar
[23]
M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y. Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min, S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, E. V. Chulkov. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
CrossRef ADS Google scholar
[24]
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, Q. K. Xue. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
CrossRef ADS Google scholar
[25]
F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357(6348): 287
CrossRef ADS Google scholar
[26]
Y. Lu, W. Xu, M. Zeng, G. Yao, L. Shen, M. Yang, Z. Luo, F. Pan, K. Wu, T. Das, P. He, J. Jiang, J. Martin, Y. P. Feng, H. Lin, X. Wang. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett., 2015, 15(1): 80
CrossRef ADS Google scholar
[27]
Y. Bai, L. Cai, N. Mao, R. Li, Y. Dai, B. Huang, C. Niu. Doubled quantum spin Hall effect with high-spin Chern number in α-antimonene and α-bismuthene. Phys. Rev. B, 2022, 105(19): 195142
CrossRef ADS Google scholar
[28]
L. Kou, X. Tan, Y. Ma, H. Tahini, L. Zhou, Z. Sun, D. Aijun, C. Chen, S. C. Smith. Tetragonal bismuth bilayer: A stable and robust quantum spin Hall insulator. 2D Mater., 2015, 2: 045010
CrossRef ADS Google scholar
[29]
R. W. Zhang, C. W. Zhang, W. X. Ji, S. S. Yan, Y. G. Yao. First-principles prediction on bismuthylene monolayer as a promising quantum spin Hall insulator. Nanoscale, 2017, 9(24): 8207
CrossRef ADS Google scholar
[30]
X. Kong, L. Li, O. Leenaerts, X. J. Liu, F. M. Peeters. New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings. Phys. Rev. B, 2017, 96(3): 035123
CrossRef ADS Google scholar
[31]
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[32]
G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
CrossRef ADS Google scholar
[33]
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[34]
S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef ADS Google scholar
[35]
J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244
CrossRef ADS Google scholar
[36]
S. Grimme, J. Antony, S. Ehrlich, H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu. J. Chem. Phys., 2010, 132(15): 154104
CrossRef ADS Google scholar
[37]
S. Grimme, S. Ehrlich, L. Goerigk. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7): 1456
CrossRef ADS Google scholar
[38]
A. A. Soluyanov, D. Vanderbilt. Wannier representation of Z2 topological insulators. Phys. Rev. B, 2011, 83(3): 035108
CrossRef ADS Google scholar
[39]
A. A. Soluyanov, D. Vanderbilt. Computing topological invariants without inversion symmetry. Phys. Rev. B, 2011, 83(23): 235401
CrossRef ADS Google scholar
[40]
M. P. L. Sancho, J. M. L. Sancho, J. Rubio. Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F Met. Phys., 1984, 14(5): 1205
CrossRef ADS Google scholar
[41]
M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, J. Rubio. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15(4): 851
CrossRef ADS Google scholar
[42]
J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, L. Fu. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater., 2014, 13(2): 178
CrossRef ADS Google scholar
[43]
J. Liu, X. Qian, L. Fu. Crystal field effect induced topological crystalline insulators in monolayer IV–VI semiconductors. Nano Lett., 2015, 15(4): 2657
CrossRef ADS Google scholar
[44]
C. Niu, P. M. Buhl, G. Bihlmayer, D. Wortmann, S. Blügel, Y. Mokrousov. Topological crystalline insulator and quantum anomalous Hall states in IV-VI-based monolayers and their quantum wells. Phys. Rev. B, 2015, 91(20): 201401
CrossRef ADS Google scholar
[45]
L. Yan, C. M. Lopez, R. P. Shrestha, E. A. Irene, A. A. Suvorova, M. Saunders. Magnesium oxide as a candidate high-κ gate dielectric. Appl. Phys. Lett., 2006, 88(14): 142901
CrossRef ADS Google scholar
[46]
A. Posadas, F. J. Walker, C. H. Ahn, T. L. Goodrich, Z. Cai, K. S. Ziemer. Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Appl. Phys. Lett., 2008, 92(23): 233511
CrossRef ADS Google scholar
[47]
T. Hirahara, G. Bihlmayer, Y. Sakamoto, M. Yamada, H. Miyazaki, S. I. Kimura, S. Blügel, S. Hasegawa. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te2. Phys. Rev. Lett., 2011, 107(16): 166801
CrossRef ADS Google scholar
[48]
F. Yang, L. Miao, Z. F. Wang, M. Y. Yao, F. Zhu, Y. R. Song, M. X. Wang, J. P. Xu, A. V. Fedorov, Z. Sun, G. B. Zhang, C. Liu, F. Liu, D. Qian, C. L. Gao, J. F. Jia. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett., 2012, 109(1): 016801
CrossRef ADS Google scholar
[49]
F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. C. Zhang, J. Jia. Epitaxial growth of two-dimensional stanene. Nat. Mater., 2015, 14(10): 1020
CrossRef ADS Google scholar

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/10.1007/s11467-023-1262-x and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1262-x.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12004137), the Taishan Scholar Project of Shandong Province (No. ts20190939), and the Natural Science Foundation of Shandong Province (Grant No. ZR2020QA052).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4925 KB)

Accesses

Citations

Detail

Sections
Recommended

/