Correlation-driven threefold topological phase transition in monolayer OsBr2

San-Dong Guo, Yu-Ling Tao, Wen-Qi Mu, Bang-Gui Liu

PDF(5506 KB)
PDF(5506 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33304. DOI: 10.1007/s11467-022-1243-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Correlation-driven threefold topological phase transition in monolayer OsBr2

Author information +
History +

Abstract

Spin−orbit coupling (SOC) combined with electronic correlation can induce topological phase transition, producing novel electronic states. Here, we investigate the impact of SOC combined with correlation effects on physical properties of monolayer OsBr2, based on first-principles calculations with generalized gradient approximation plus U (GGA+U) approach. With intrinsic out-of-plane magnetic anisotropy, OsBr2 undergoes threefold topological phase transition with increasing U, and valley-polarized quantum anomalous Hall insulator (VQAHI) to half-valley-metal (HVM) to ferrovalley insulator (FVI) to HVM to VQAHI to HVM to FVI transitions can be induced. These topological phase transitions are connected with sign-reversible Berry curvature and band inversion between \textcolor[RGB]12,108,100dxy/\textcolor[RGB]12,108,100dx2y2 and \textcolor[RGB]12,108,100dz2 orbitals. Due to \textcolor[RGB]12,108,1006¯m2 symmetry, piezoelectric polarization of OsBr2 is confined along the in-plane armchair direction, and only one d11 is independent. For a given material, the correlation strength should be fixed, and OsBr2 may be a piezoelectric VQAHI (PVQAHI), piezoelectric HVM (PHVM) or piezoelectric FVI (PFVI). The valley polarization can be flipped by reversing the magnetization of Os atoms, and the ferrovalley (FV) and nontrivial topological properties will be suppressed by manipulating out-of-plane magnetization to in-plane one. In considered reasonable U range, the estimated Curie temperatures all are higher than room temperature. Our findings provide a comprehensive understanding on possible electronic states of OsBr2, and confirm that strong SOC combined with electronic correlation can induce multiple quantum phase transition.

Graphical abstract

Keywords

correlation / SOC / phase transition / piezoelectricity

Cite this article

Download citation ▾
San-Dong Guo, Yu-Ling Tao, Wen-Qi Mu, Bang-Gui Liu. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys., 2023, 18(3): 33304 https://doi.org/10.1007/s11467-022-1243-5

References

[1]
B. Huang , G. Clark , E. Navarro-Moratalla , D. R. Klein , R. Cheng , K. L. Seyler , D. Zhong , E. Schmidgall , M. A. McGuire , D. H. Cobden , W. Yao , D. Xiao , P. Jarillo-Herrero , X. Xu . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef ADS Google scholar
[2]
M. Z. Hasan , C. L. Kane . Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[3]
X. L. Qi , S. C. Zhang . Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef ADS Google scholar
[4]
R. Yu , W. Zhang , H. J. Zhang , S. C. Zhang , X. Dai , Z. Fang . Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
CrossRef ADS Google scholar
[5]
X. Wan , A. M. Turner , A. Vishwanath , S. Y. Savrasov . Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
CrossRef ADS Google scholar
[6]
W. Y. Tong , S. J. Gong , X. Wan , C. G. Duan . Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7(1): 13612
CrossRef ADS Google scholar
[7]
Y. Choi , H. Kim , Y. Peng , A. Thomson , C. Lewandowski , R. Polski , Y. Zhang , H. S. Arora , K. Watanabe , T. Taniguchi , J. Alicea , S. Nadj-Perge . Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature, 2021, 589(7843): 536
CrossRef ADS Google scholar
[8]
Z. Cui , A. J. Grutter , H. Zhou , H. Cao , Y. Dong , D. A. Gilbert , J. Wang , Y. S. Liu , J. Ma , Z. Hu , J. Guo , J. Xia , B. J. Kirby , P. Shafer , E. Arenholz , H. Chen , X. Zhai , Y. Lu . Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Sci. Adv., 2020, 6(15): eaay0114
CrossRef ADS Google scholar
[9]
I. Leonov , S. L. Skornyakov , V. I. Anisimov , D. Vollhardt . Correlation-driven topological Fermi surface transition in FeSe. Phys. Rev. Lett., 2015, 115(10): 106402
CrossRef ADS Google scholar
[10]
Y. Wang , Z. Wang , Z. Fang , X. Dai . Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3. Phys. Rev. B Condens. Matter Mater. Phys., 2015, 91(12): 125139
CrossRef ADS Google scholar
[11]
J. Y. Li , Q. S. Yao , L. Wu , Z. X. Hu , B. Y. Gao , X. G. Wan , Q. H. Liu . Designing light-element materials with large effective spin−orbit coupling. Nat. Commun., 2022, 13(1): 919
CrossRef ADS Google scholar
[12]
H. Hu , W. Y. Tong , Y. H. Shen , X. Wan , C. G. Duan . Concepts of the half-valley-metal and quantum anomalous valley Hall effect. npj Comput. Mater., 2020, 6: 129
CrossRef ADS Google scholar
[13]
S. Li , Q. Q. Wang , C. M. Zhang , P. Guo , S. A. Yang . Correlation-driven topological and valley states in monolayer VSi2P4. Phys. Rev. B, 2021, 104(8): 085149
CrossRef ADS Google scholar
[14]
S. D. Guo , J. X. Zhu , M. Y. Yin , B. G. Liu . Substantial electronic correlation effects on the electronic properties in a Janus FeClF monolayer. Phys. Rev. B, 2022, 105(10): 104416
CrossRef ADS Google scholar
[15]
S. D. Guo , W. Q. Mu , B. G. Liu . Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2. 2D Mater., 2022, 9: 035011
CrossRef ADS Google scholar
[16]
J. Zhou , Q. Sun , P. Jena . Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices. Phys. Rev. Lett., 2017, 119(4): 046403
CrossRef ADS Google scholar
[17]
T. Zhou , J. Y. Zhang , Y. Xue , B. Zhao , H. S. Zhang , H. Jiang , Z. Q. Yang . Quantum spin–quantum anomalous Hall effect with tunable edge states in Sb monolayer-based heterostructures. Phys. Rev. B, 2016, 94(23): 235449
CrossRef ADS Google scholar
[18]
T. Zhou , S. Cheng , M. Schleenvoigt , P. Schüffelgen , H. Jiang , Z. Yang , I. Žutić . Quantum spin-valley Hall kink states: From concept to materials design. Phys. Rev. Lett., 2021, 127(11): 116402
CrossRef ADS Google scholar
[19]
S. D. Guo , W. Q. Mu , J. H. Wang , Y. X. Yang , B. Wang , Y. S. Ang . Strain effects on the topological and valley properties of the Janus monolayer VSiGeN4. Phys. Rev. B, 2022, 106(6): 064416
CrossRef ADS Google scholar
[20]
H. Huan , Y. Xue , B. Zhao , G. Y. Gao , H. R. Bao , Z. Q. Yang . Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os). Phys. Rev. B, 2021, 104(16): 165427
CrossRef ADS Google scholar
[21]
Y. J. Wang , F. F. Li , H. L. Zheng , X. F. Han , Y. Yan . Large magnetic anisotropy and its strain modulation in two-dimensional intrinsic ferromagnetic monolayer RuO2 and OsO2. Phys. Chem. Chem. Phys., 2018, 20(44): 28162
CrossRef ADS Google scholar
[22]
M. Zhang , H. M. Guo , J. Lv , H. S. Wu . Electronic and magnetic properties of 5d transition metal substitution doping monolayer antimonene: Within GGA and GGA + U framework. Appl. Surf. Sci., 2020, 508: 145197
CrossRef ADS Google scholar
[23]
P. Hohenberg , W. Kohn . Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864
CrossRef ADS Google scholar
[24]
W. Kohn , L. J. Sham . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
CrossRef ADS Google scholar
[25]
G. Kresse . Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids, 1995, 192−193: 222
CrossRef ADS Google scholar
[26]
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[27]
G. Kresse , D. Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[28]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[29]
X. Wu , D. Vanderbilt , D. R. Hamann . Systematic treatment of displacements. strains .and electric fields in density-functional perturbation theory. Phys. Rev. B, 2005, 72(3): 035105
CrossRef ADS Google scholar
[30]
A. A. Mostofi , J. R. Yates , G. Pizzi , Y. S. Lee , I. Souza , D. Vanderbilt , N. Marzari . An updated version of Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun., 2014, 185(8): 2309
CrossRef ADS Google scholar
[31]
Q. Wu , S. Zhang , H. F. Song , M. Troyer , A. A. Soluyanov . WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
CrossRef ADS Google scholar
[32]
T. Fukui , Y. Hatsugai , H. Suzuki . Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn., 2005, 74(6): 1674
CrossRef ADS Google scholar
[33]
H.J. Kim, Webpage: github.com/Infant83/VASPBERRY, 2018
[34]
H. J. Kim , C. Li , J. Feng , J.-H. Cho , Z. Zhang . Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices. Phys. Rev. B, 2016, 93: 041404(R)
CrossRef ADS Google scholar
[35]
L. Liu , X. Ren , J. H. Xie , B. Cheng , W. K. Liu , T. Y. An , H. W. Qin , J. F. Hu . Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci., 2019, 480: 300
CrossRef ADS Google scholar
[36]
K. N. Duerloo , M. T. Ong , E. J. Reed . Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett., 2012, 3(19): 2871
CrossRef ADS Google scholar
[37]
S. D. Guo , J. X. Zhu , W. Q. Mu , B. G. Liu . Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer. Phys. Rev. B, 2021, 104(22): 224428
CrossRef ADS Google scholar
[38]
E. Cadelano , L. Colombo . Effect of hydrogen coverage on the Young’s modulus of graphene. Phys. Rev. B, 2012, 85(24): 245434
CrossRef ADS Google scholar
[39]
P. Zhao , Y. Dai , H. Wang , B. B. Huang , Y. D. Ma . Intrinsic valley polarization and anomalous valley Hall effect in single-layer 2H-FeCl2. ChemPhysMater, 2022, 1(1): 56
CrossRef ADS Google scholar
[40]
R. Li , J. W. Jiang , W. B. Mi , H. L. Bai . Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 2021, 13(35): 14807
CrossRef ADS Google scholar
[41]
X. Zhou , R. Zhang , Z. Zhang , W. Feng , Y. Mokrousov , Y. Yao . Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors. npj Comput. Mater., 2021, 7: 160
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1243-5 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1243-5 and are accessible for authorized users.

Acknowledgements

This work was supported by the Natural Science Basis Research Plan in Shaanxi Province of China (No. 2021JM-456), Graduate Innovation Fund Project in Xi’an University of Posts and Telecommunications (No. CXJJDL2021001), the National Natural Science Foundation of China (Grant No. 11974393) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33020100). We are grateful to Shaanxi Supercomputing Center of China, and the calculations were performed on TianHe-2.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5506 KB)

Accesses

Citations

Detail

Sections
Recommended

/