Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors

Yuchen Cai, Jia Yang, Feng Wang, Shuhui Li, Yanrong Wang, Xueying Zhan, Fengmei Wang, Ruiqing Cheng, Zhenxing Wang, Jun He

PDF(5383 KB)
PDF(5383 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33308. DOI: 10.1007/s11467-022-1241-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors

Author information +
History +

Abstract

Detection of solar-blind ultraviolet (SB-UV) light is important in applications like confidential communication, flame detection, and missile warning system. However, the existing SB-UV photodetectors still show low sensitivities. In this work, we demonstrate the extraordinary SB-UV detection performance of α-In2Se3 phototransistors. Benefiting from the coupled semiconductor and ferroelectricity property, the phototransistor has an ultraweak detectable power of 17.85 fW, an ultrahigh gain of 1.2 × 106, a responsivity of 2.6 × 105 A/W, a detectivity of 1.3 × 1016 Jones and an ultralow noise-equivalent-power of 4.2 × 10−20 W/Hz1/2 for 275 nm light. Its performance exceeds most other UV detectors, even including commercial photomultiplier tubes and avalanche photodiodes. It can be also implemented as an optoelectronic synapse for neuromorphic computing. A 784×300×10 artificial neural network (ANN) based on this optoelectronic synapse is constructed and demonstrated with a high recognition accuracy and good noise-tolerance for the Fashion-MNIST dataset. These extraordinary features endow this phototransistor with the potential for constructing advanced SB-UV detectors and intelligent hardware.

Graphical abstract

Keywords

solar-blind ultraviolet detectors / α-In2Se3 / optoelectronic synapse / neuromorphic computing

Cite this article

Download citation ▾
Yuchen Cai, Jia Yang, Feng Wang, Shuhui Li, Yanrong Wang, Xueying Zhan, Fengmei Wang, Ruiqing Cheng, Zhenxing Wang, Jun He. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308 https://doi.org/10.1007/s11467-022-1241-7

References

[1]
M. Gong , Q. Liu , B. Cook , B. Kattel , T. Wang , W. L. Chan , D. Ewing , M. Casper , A. Stramel , J. Z. Wu . All-printable ZnO quantum dots/graphene van der Waals heterostructures for ultrasensitive detection of ultraviolet light. ACS Nano, 2017, 11(4): 4114
CrossRef ADS Google scholar
[2]
X.XuJ.ChenS.CaiZ.LongY.ZhangL.SuS.HeC.TangP.LiuH.PengX.Fang, A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector, Adv. Mater. 30(43), 1803165 (2018)
[3]
D. Zhang , W. Zheng , R. Lin , Y. Li , F. Huang . Ultrahigh EQE (15%) solar‐blind UV photovoltaic detector with organic–inorganic heterojunction via dual built‐in fields enhanced photogenerated carrier separation efficiency mechanism. Adv. Funct. Mater., 2019, 29(26): 1900935
CrossRef ADS Google scholar
[4]
C. N. Lin , Y. J. Lu , X. Yang , Y. Z. Tian , C. J. Gao , J. L. Sun , L. Dong , F. Zhong , W. D. Hu , C. X. Shan . Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater., 2018, 6(15): 1800068
CrossRef ADS Google scholar
[5]
W. Yang , K. Hu , F. Teng , J. Weng , Y. Zhang , X. Fang . High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched Type II Se/n-Si heterojunctions. Nano Lett., 2018, 18(8): 4697
CrossRef ADS Google scholar
[6]
Y. Zhang , S. Li , Z. Li , H. Liu , X. Liu , J. Chen , X. Fang . High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett., 2021, 21(1): 382
CrossRef ADS Google scholar
[7]
A. Kumar , M. A. Khan , M. Kumar . Recent advances in UV photodetectors based on 2D materials: A review. J. Phys. D Appl. Phys., 2022, 55(13): 133002
CrossRef ADS Google scholar
[8]
R. Cao , Y. Zhang , H. Wang , Y. Zeng , J. Zhao , L. Zhang , J. Li , F. Meng , Z. Shi , D. Fan , Z. Guo . Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets. Nanophotonics, 2020, 9(8): 2459
CrossRef ADS Google scholar
[9]
W. Zheng , R. Lin , Z. Zhang , F. Huang . Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces, 2018, 10(32): 27116
CrossRef ADS Google scholar
[10]
J. Chu , F. Wang , L. Yin , L. Lei , C. Yan , F. Wang , Y. Wen , Z. Wang , C. Jiang , L. Feng , J. Xiong , Y. Li , J. He . High-performance ultraviolet photodetector based on a few-layered 2D NiPS3 nanosheet. Adv. Funct. Mater., 2017, 27(32): 1701342
CrossRef ADS Google scholar
[11]
W. Y. Kong , G. A. Wu , K. Y. Wang , T. F. Zhang , Y. F. Zou , D. D. Wang , L. B. Luo . Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater., 2016, 28(48): 10725
CrossRef ADS Google scholar
[12]
S. Li , Y. Zhang , W. Yang , H. Liu , X. Fang . 2D perovskite Sr2Nb3O10 for high‐performance UV photodetectors. Adv. Mater., 2020, 32(7): 1905443
CrossRef ADS Google scholar
[13]
B. K. Lubsandorzhiev . On the history of photomultiplier tube invention. Nucl. Instrum. Methods Phys. Res. A, 2006, 567(1): 236
CrossRef ADS Google scholar
[14]
A. Lafuente , A. Abanades , P. T. Leon , F. Sordo , J. M. Martinez-Val . Dynamic response of an accelerator driven system to accelerator beam interruptions for criticality. Nucl. Instrum. Methods Phys. Res. A, 2008, 591(2): 327
CrossRef ADS Google scholar
[15]
L. Su , Q. Zhang , T. Wu , M. Chen , Y. Su , Y. Zhu , R. Xiang , X. Gui , Z. Tang . High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction. Appl. Phys. Lett., 2014, 105(7): 072106
CrossRef ADS Google scholar
[16]
B. Nie , J. G. Hu , L. B. Luo , C. Xie , L. H. Zeng , P. Lv , F. Z. Li , J. S. Jie , M. Feng , C. Y. Wu , Y. Q. Yu , S. H. Yu . Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small, 2013, 9(17): 2872
CrossRef ADS Google scholar
[17]
X. Wan , Y. Xu , H. Guo , K. Shehzad , A. Ali , Y. Liu , J. Yang , D. Dai , C. T. Lin , L. Liu , H. C. Cheng , F. Wang , X. Wang , H. Lu , W. Hu , X. Pi , Y. Dan , J. Luo , T. Hasan , X. Duan , X. Li , J. Xu , D. Yang , T. Ren , B. Yu . A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: Breaking the limit of silicon?. npj 2D Mater. Appl., 2017, 1(1): 4
CrossRef ADS Google scholar
[18]
M. A. Kang , S. Kim , I. S. Jeon , Y. R. Lim , C. Y. Park , W. Song , S. S. Lee , J. Lim , K. S. An , S. Myung . Highly efficient and flexible photodetector based on MoS2–ZnO heterostructures. RSC Adv., 2019, 9(34): 19707
CrossRef ADS Google scholar
[19]
H. Li , S. Su , C. Liang , M. Huang , X. Ma , G. Yu , H. Tao . Ultraviolet photodetector based on the hybrid graphene/phosphor field-effect transistor. Opt. Mater., 2020, 109: 110439
CrossRef ADS Google scholar
[20]
V. Krishnamurthi , M. X. Low , S. Kuriakose , S. Sriram , M. Bhaskaran , S. Walia . Black phosphorus nanoflakes vertically stacked on MoS2 nanoflakes as heterostructures for photodetection. ACS Appl. Nano Mater., 2021, 4(7): 6928
CrossRef ADS Google scholar
[21]
J. Seo , J. H. Lee , J. Pak , K. Cho , J. K. Kim , J. Kim , J. Jang , H. Ahn , S. C. Lim , S. Chung , K. Kang , T. Lee . Ultrasensitive photodetection in MoS2 avalanche phototransistors. Adv. Sci. (Weinh.), 2021, 8(19): 2102437
CrossRef ADS Google scholar
[22]
V. Adinolfi , E. H. Sargent . Photovoltage field-effect transistors. Nature, 2017, 542(7641): 324
CrossRef ADS Google scholar
[23]
F. P. García de Arquer , A. Armin , P. Meredith , E. H. Sargent . Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater., 2017, 2(3): 16100
CrossRef ADS Google scholar
[24]
J. Feng , C. Gong , H. Gao , W. Wen , Y. Gong , X. Jiang , B. Zhang , Y. Wu , Y. Wu , H. Fu , L. Jiang , X. Zhang . Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat. Electron., 2018, 1(7): 404
CrossRef ADS Google scholar
[25]
X. Gong , M. Tong , Y. Xia , W. Cai , J. S. Moon , Y. Cao , G. Yu , C. L. Shieh , B. Nilsson , A. J. Heeger . High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325(5948): 1665
CrossRef ADS Google scholar
[26]
G. Konstantatos , M. Badioli , L. Gaudreau , J. Osmond , M. Bernechea , F. P. Garcia de Arquer , F. Gatti , F. H. Koppens . Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol., 2012, 7(6): 363
CrossRef ADS Google scholar
[27]
F. Guo , B. Yang , Y. Yuan , Z. Xiao , Q. Dong , Y. Bi , J. Huang . A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 2012, 7(12): 798
CrossRef ADS Google scholar
[28]
Y. Zhang , D. J. Hellebusch , N. D. Bronstein , C. Ko , D. F. Ogletree , M. Salmeron , A. P. Alivisatos . Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nat. Commun., 2016, 7(1): 11924
CrossRef ADS Google scholar
[29]
J. Yang , F. Wang , J. F. Guo , Y. R. Wang , C. X. Jiang , S. H. Li , Y. C. Cai , X. Y. Zhan , X. F. Liu , Z. H. Cheng , J. He , Z. X. Wang . Ultrasensitive ferroelectric semiconductor phototransistors for photon‐level detection. Adv. Funct. Mater., 2022, 32(36): 2205468
CrossRef ADS Google scholar
[30]
Y. X. Hou , Y. Li , Z. C. Zhang , J. Q. Li , D. H. Qi , X. D. Chen , J. J. Wang , B. W. Yao , M. X. Yu , T. B. Lu , J. Zhang . Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano, 2021, 15(1): 1497
CrossRef ADS Google scholar
[31]
E. J. Fuller , F. E. Gabaly , F. Leonard , S. Agarwal , S. J. Plimpton , R. B. Jacobs-Gedrim , C. D. James , M. J. Marinella , A. A. Talin . Li-ion synaptic transistor for low power analog computing. Adv. Mater., 2017, 29(4): 1604310
CrossRef ADS Google scholar
[32]
J. Sun , S. Oh , Y. Choi , S. Seo , M. J. Oh , M. Lee , W. B. Lee , P. J. Yoo , J. H. Cho , J. H. Park . Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater., 2018, 28(47): 1804397
CrossRef ADS Google scholar
[33]
Z. Luo , Z. Wang , Z. Guan , C. Ma , L. Zhao , C. Liu , H. Sun , H. Wang , Y. Lin , X. Jin , Y. Yin , X. Li . High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing. Nat. Commun., 2022, 13(1): 699
CrossRef ADS Google scholar
[34]
S. Wang , L. Liu , L. Gan , H. Chen , X. Hou , Y. Ding , S. Ma , D. W. Zhang , P. Zhou . Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun., 2021, 12(1): 53
CrossRef ADS Google scholar
[35]
Y. van de Burgt , E. Lubberman , E. J. Fuller , S. T. Keene , G. C. Faria , S. Agarwal , M. J. Marinella , A. Alec Talin , A. Salleo . A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater., 2017, 16(4): 414
CrossRef ADS Google scholar
[36]
M. Prezioso , F. Merrikh-Bayat , B. D. Hoskins , G. C. Adam , K. K. Likharev , D. B. Strukov . Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521(7550): 61
CrossRef ADS Google scholar
[37]
D. B. Strukov , G. S. Snider , D. R. Stewart , R. S. Williams . The missing memristor found. Nature, 2008, 453(7191): 80
CrossRef ADS Google scholar
[38]
T. Tuma , A. Pantazi , M. Le Gallo , A. Sebastian , E. Eleftheriou . Stochastic phase-change neurons. Nat. Nanotechnol., 2016, 11(8): 693
CrossRef ADS Google scholar
[39]
C. Y. Wang , S. J. Liang , S. Wang , P. F. Wang , Z. A. Li , Z. R. Wang , A. Y. Gao , C. Pan , C. Liu , J. Liu , H. F. Yang , X. W. Liu , W. H. Song , C. Wang , B. Cheng , X. M. Wang , K. J. Chen , Z. L. Wang , K. J. Watanabe , T. Taniguchi , J. J. Yang , F. Miao . Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv., 2020, 6(26): eaba6173
CrossRef ADS Google scholar
[40]
T. Ahmed , M. Tahir , M. X. Low , Y. Ren , S. A. Tawfik , E. L. H. Mayes , S. Kuriakose , S. Nawaz , M. J. S. Spencer , H. Chen , M. Bhaskaran , S. Sriram , S. Walia . Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater., 2021, 33(10): 2004207
CrossRef ADS Google scholar
[41]
T. Y. Wang , J. L. Meng , Z. Y. He , L. Chen , H. Zhu , Q. Q. Sun , S. J. Ding , P. Zhou , D. W. Zhang . Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. (Weinh.), 2020, 7(8): 1903480
CrossRef ADS Google scholar
[42]
F. Zhou , Z. Zhou , J. Chen , T. H. Choy , J. Wang , N. Zhang , Z. Lin , S. Yu , J. Kang , H. P. Wong , Y. Chai . Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol., 2019, 14(8): 776
CrossRef ADS Google scholar
[43]
Q. Wu , J. Wang , J. Cao , C. Lu , G. Yang , X. Shi , X. Chuai , Y. Gong , Y. Su , Y. Zhao , N. Lu , D. Geng , H. Wang , L. Li , M. Liu . Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater., 2018, 4(12): 1800556
CrossRef ADS Google scholar
[44]
P. Luo , C. Liu , J. Lin , X. Duan , W. Zhang , C. Ma , Y. Lv , X. Zou , Y. Liu , F. Schwierz , W. Qin , L. Liao , J. He , X. Liu . Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
CrossRef ADS Google scholar
[45]
J. Y. Yang , M. J. Yeom , Y. Park , J. Heo , G. Yoo . Ferroelectric α‐In2Se3 wrapped‐gate β‐Ga2O3 field‐effect transistors for dynamic threshold voltage control. Adv. Electron. Mater., 2021, 7(8): 2100306
CrossRef ADS Google scholar
[46]
J. Cui , L. Wang , Z. Du , P. Ying , Y. Deng . High thermoelectric performance of a defect in α-In2Se3-based solid solution upon substitution of Zn for In. J. Mater. Chem. C, 2015, 3(35): 9069
CrossRef ADS Google scholar
[47]
J. J. Wang , F. Wang , Z. X. Wang , W. H. Huang , Y. Y. Yao , Y. R. Wang , J. Yang , N. N. Li , L. Yin , R. Q. Cheng , X. Y. Zhan , C. X. Shan , J. He . Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci. Bull. (Beijing), 2021, 66(22): 2288
CrossRef ADS Google scholar
[48]
W. Ding , J. Zhu , Z. Wang , Y. Gao , D. Xiao , Y. Gu , Z. Zhang , W. Zhu . Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956
CrossRef ADS Google scholar
[49]
Y. Zhou , D. Wu , Y. Zhu , Y. Cho , Q. He , X. Yang , K. Herrera , Z. Chu , Y. Han , M. C. Downer , H. Peng , K. Lai . Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett., 2017, 17(9): 5508
CrossRef ADS Google scholar
[50]
F. Xue , W. Hu , K. C. Lee , L. S. Lu , J. Zhang , H. L. Tang , A. Han , W. T. Hsu , S. Tu , W. H. Chang , C. H. Lien , J. H. He , Z. Zhang , L. J. Li , X. Zhang . Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit. Adv. Funct. Mater., 2018, 28(50): 1803738
CrossRef ADS Google scholar
[51]
C. Zheng , L. Yu , L. Zhu , J. L. Collins , D. Kim , Y. Lou , C. Xu , M. Li , Z. Wei , Y. Zhang , M. T. Edmonds , S. Li , J. Seidel , Y. Zhu , J. Z. Liu , W. X. Tang , M. S. Fuhrer . Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv., 2018, 4(7): eaar7720
CrossRef ADS Google scholar
[52]
Y. Zhang , L. Wang , H. Chen , T. Ma , X. Lu , K. P. Loh . Analog and digital mode α‐In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater., 2021, 7(12): 2100609
CrossRef ADS Google scholar
[53]
M. Si , A. K. Saha , S. Gao , G. Qiu , J. Qin , Y. Duan , J. Jian , C. Niu , H. Wang , W. Wu , S. K. Gupta , P. D. Ye . A ferroelectric semiconductor field-effect transistor. Nat. Electron., 2019, 2(12): 580
CrossRef ADS Google scholar
[54]
F. Xue , X. He , W. Liu , D. Periyanagounder , C. Zhang , M. Chen , C. H. Lin , L. Luo , E. Yengel , V. Tung , T. D. Anthopoulos , L. J. Li , J. H. He , X. Zhang . Optoelectronic ferroelectric domain‐wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater., 2020, 30(52): 2004206
CrossRef ADS Google scholar
[55]
K. Xu , W. Jiang , X. Gao , Z. Zhao , T. Low , W. Zhu . Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors. Nanoscale, 2020, 12(46): 23488
CrossRef ADS Google scholar
[56]
Y. Zhang , J. Dai , X. Zhong , D. Zhang , G. Zhong , J. Li . Probing ultrafast dynamics of ferroelectrics by time-resolved pump-probe spectroscopy. Adv. Sci. (Weinh.), 2021, 8(22): 2102488
CrossRef ADS Google scholar
[57]
H. Wang , J. Guo , J. Miao , W. Luo , Y. Gu , R. Xie , F. Wang , L. Zhang , P. Wang , W. Hu . Emerging single-photon detectors based on low-dimensional materials. Small, 2022, 18(5): 2103963
CrossRef ADS Google scholar
[58]
X.HanR.KashifV.Roland, Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms, arXiv: 1708.07747 (2017)

Electronic Supplementary Material

The online version contains supplementary material available at https://doi.org/10.1007/10.1007/s11467-022-1241-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1241-7.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2021YFA1201500 and 2018YFA0703700), the National Natural Science Foundation of China (Nos. 91964203, 61974036, 62274046, 22179029, and 12204122), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB44000000), the Fundamental Research Funds for the Central Universities (No. 2042021kf0067), and CAS Key Laboratory of Nanosystem and Hierarchical Fabrication. The authors also gratefully acknowledge the support of Youth Innovation Promotion Association CAS.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5383 KB)

Accesses

Citations

Detail

Sections
Recommended

/