Quantum dynamics studies on the non-adiabatic effects of H + LiD reaction
Yuwen Bai, Zijiang Yang, Bayaer Buren, Ye Mao, Maodu Chen
Quantum dynamics studies on the non-adiabatic effects of H + LiD reaction
After the Big Bang, chemical reactions of hydrogen with LiH and its isotopic variants played an important role in the late stage of recombination. Moreover, these reactions have attracted the attention of experts in the field of molecular dynamics because of its simple structure. Electronically non-adiabatic effects play a key role in many chemical reactions, while the related studies in LiH2 reactive system and its isotopic variants are not enough, so the microscopic mechanism of this system has not been fully explored. In this work, the microscopic mechanism of H + LiD reaction are performed by comparing both the adiabatic and non-adiabatic results to study the non-adiabatic effects. The reactivity of R1 (H + LiD → Li + HD) channel is inhibited, while that of R2 (H + LiD → D + LiH) channel is enhanced when the non-adiabatic couplings are considered. For R1 channel, a direct stripping process dominates this channel and the main reaction mechanism is not influenced by the non-adiabatic effects. For R2 channel, at relatively low collision energy, the dominance changes from a rebound process to the complex-forming mechanism when the non-adiabatic effects are considered, whereas the rebound collision approach still dominates the reaction at relatively high collision energy in both calculations. The presented results provide a basis for further detailed study on this importantly astrophysical reaction system.
non-adiabatic effects / quantum dynamics / time-dependent wave packet / astrophysical reaction
[1] |
E. Bodo, F. A. Gianturco, R. Martinazzo. The gas-phase lithium chemistry in the early universe: Elementary processes, interaction forces and quantum dynamics. Phys. Rep., 2003, 384(3): 85
CrossRef
ADS
Google scholar
|
[2] |
S. Lepp, P. Stancil, A. Dalgarno. Atomic and molecular processes in the early universe. J. Phys. At. Mol. Opt. Phys., 2002, 35(10): 201
CrossRef
ADS
Google scholar
|
[3] |
Y. Zhang, N. Wang, Q. Li, L. Ou, J. Tian, M. Liu, K. Zhao, X. Wu, Z. Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys., 2020, 15(5): 54301
CrossRef
ADS
Google scholar
|
[4] |
Q. He, M. D. Reid, B. Opanchuk, R. Polkinghorne, L. E. Rosales-Zárate, P. D. Drummond. Quantum dynamics in ultracold atomic physics. Front. Phys., 2012, 7(1): 16
CrossRef
ADS
Google scholar
|
[5] |
H. Zheng, Q. Gu. Dynamics of Bose−Einstein condensates in a one-dimensional optical lattice with double-well potential. Front. Phys., 2013, 8(4): 375
CrossRef
ADS
Google scholar
|
[6] |
J. Wu, R. Qi, A. Ji, W. Liu. Quantum tunneling of ultracold atoms in optical traps. Front. Phys., 2014, 9(2): 137
CrossRef
ADS
Google scholar
|
[7] |
S. Lepp, J. M. Shull. Molecules in the early universe. Astrophys. J., 1984, 280: 465
CrossRef
ADS
Google scholar
|
[8] |
N. J. Clarke, M. Sironi, M. Raimondi, S. Kumar, F. A. Gianturco, E. Buonomo, D. L. Cooper. Classical and quantum dynamics on the collinear potential energy surface for the reaction of Li with H2. Chem. Phys., 1998, 233(1): 9
CrossRef
ADS
Google scholar
|
[9] |
R. Padmanaban, S. Mahapatra. Time-dependent wave packet dynamics of the H + HLi reactive scattering. J. Chem. Phys., 2002, 117(14): 6469
CrossRef
ADS
Google scholar
|
[10] |
T. Roy, S. Mahapatra. Quantum dynamics of H + LiH reaction and its isotopic variants. J. Chem. Phys., 2012, 136(17): 174313
CrossRef
ADS
Google scholar
|
[11] |
A. W. Huran, L. González-Sánchez, S. Gomez-Carrasco, J. Aldegunde. A quantum mechanical study of the k−j and k′−j′ vector correlations for the H + LiH → Li + H2 reaction. J. Phys. Chem. A, 2017, 121(8): 1535
CrossRef
ADS
Google scholar
|
[12] |
T. J. Martínez. Ab initio molecular dynamics around a conical intersection: Li(2p) + H2. Chem. Phys. Lett., 1997, 272(3−4): 139
CrossRef
ADS
Google scholar
|
[13] |
L. G. Diniz, A. Alijah, J. R. Mohallem. Benchmark linelists and radiative cooling functions for LiH isotopologues. Astrophys. J. Suppl. Ser., 2018, 235(2): 35
CrossRef
ADS
Google scholar
|
[14] |
J. Song, Z. Zhu. Dynamics studies of the Li(2S) + H2(X1Σg+) → LiH(X1Σ+) + H(2S) reaction by time-dependent wave packet and quasi-classical trajectory methods. Comput. Theor. Chem., 2020, 1173: 112703
CrossRef
ADS
Google scholar
|
[15] |
D. He, J. Yuan, M. Chen. Influence of rovibrational excitation on the non-diabatic state-to-state dynamics for the Li(2p) + H2 → LiH + H reaction. Sci. Rep., 2017, 7(1): 3084
CrossRef
ADS
Google scholar
|
[16] |
J. Chen, K. Lin. Influence of vibrational excitation on the reaction Li(22PJ) + H2(ν = 1) → LiH(X1Σ+) + H. J. Chem. Phys., 2003, 119(17): 8785
CrossRef
ADS
Google scholar
|
[17] |
H. S. Lee, Y. S. Lee, G. Jeung. Potential energy surfaces for LiH2 and photochemical reactions Li* + H2 ↔ LiH + H. J. Phys. Chem. A, 1999, 103(50): 11080
CrossRef
ADS
Google scholar
|
[18] |
X. He, H. Wu, P. Zhang, Y. Zhang. Quantum state-to-state dynamics of the H + LiH → H2 + Li reaction. J. Phys. Chem. A, 2015, 119(33): 8912
CrossRef
ADS
Google scholar
|
[19] |
R. Padmanaban, S. Mahapatra. Resonances in three-dimensional H + HLi scattering: A time-dependent wave packet dynamical study. J. Chem. Phys., 2004, 120(4): 1746
CrossRef
ADS
Google scholar
|
[20] |
S. Gómez-Carrasco, L. González-Sánchez, N. Bulut, O. Roncero, L. Bañares, J. F. Castillo. State-to-state quantum wave packet dynamics of the LiH + H reaction on two ab initio potential energy surfaces. Astrophys. J., 2014, 784(1): 55
CrossRef
ADS
Google scholar
|
[21] |
D. He, W. Li, M. Wang. A study on the non-adiabatic dynamics of the Li(2p) + H2 → Li(2s) + H2 quenching reaction calculated by time-dependent wavepacket method. Chem. Phys. Lett., 2021, 780: 138910
CrossRef
ADS
Google scholar
|
[22] |
L. Fu, D. Wang, X. Huang. Accurate potential energy surfaces for the first two lowest electronic states of the Li(2p) + H2 reaction. RSC Adv., 2018, 8(28): 15595
CrossRef
ADS
Google scholar
|
[23] |
M.BornW. Heisenberg, Zur quantentheorie der molekeln, in: Original Scientific Papers Wissenschaftliche Originalarbeiten, Springer, 1985, pp 216–246
|
[24] |
D. V. Makhov, W. J. Glover, T. J. Martinez, D. V. Shalashilin. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys., 2014, 141(5): 054110
CrossRef
ADS
Google scholar
|
[25] |
B. F. Curchod, T. J. Penfold, U. Rothlisberger, I. Tavernelli. Nonadiabatic ab initio molecular dynamics using linear-response time-dependent density functional theory. Cent. Eur. J. Phys., 2013, 11: 1059
CrossRef
ADS
Google scholar
|
[26] |
V. Betz, B. D. Goddard. Nonadiabatic transitions through tilted avoided crossings. SIAM J. Sci. Comput., 2011, 33(5): 2247
CrossRef
ADS
Google scholar
|
[27] |
Y. Guan, C. Xie, D. R. Yarkony, H. Guo. High-fidelity first principles nonadiabaticity: Diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Phys. Chem. Chem. Phys., 2021, 23(44): 24962
CrossRef
ADS
Google scholar
|
[28] |
F. Bernardi, M. Olivucci, M. A. Robb. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev., 1996, 25(5): 321
CrossRef
ADS
Google scholar
|
[29] |
C. Xie, C. L. Malbon, H. Guo, D. R. Yarkony. Up to a sign. The insidious effects of energetically inaccessible conical intersections on unimolecular reactions. Acc. Chem. Res., 2019, 52(2): 501
CrossRef
ADS
Google scholar
|
[30] |
H. Guo, D. R. Yarkony. Accurate nonadiabatic dynamics. Phys. Chem. Chem. Phys., 2016, 18(38): 26335
CrossRef
ADS
Google scholar
|
[31] |
C. Xie, D. R. Yarkony, H. Guo. Nonadiabatic tunneling via conical intersections and the role of the geometric phase. Phys. Rev. A, 2017, 95(2): 022104
CrossRef
ADS
Google scholar
|
[32] |
S. Mai, P. Marquetand, L. González. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem., 2015, 115(18): 1215
CrossRef
ADS
Google scholar
|
[33] |
B. K. Kendrick, J. Hazra, N. Balakrishnan. Geometric phase effects in the ultracold H + H2 reaction. J. Chem. Phys., 2016, 145(16): 164303
CrossRef
ADS
Google scholar
|
[34] |
A. J. C. Varandas, H. G. Yu. Geometric phase effects on transition-state resonances and bound vibrational states of H3 via a time-dependent wavepacket method. J. Chem. Soc. Faraday Trans., 1997, 93(5): 819
CrossRef
ADS
Google scholar
|
[35] |
H. Koizumi, S. Sugano. The geometric phase in two electronic level systems. J. Chem. Phys., 1994, 101(6): 4903
CrossRef
ADS
Google scholar
|
[36] |
J. C. Juanes-Marcos, S. C. Althorpe, E. Wrede. Effect of the geometric phase on the dynamics of the hydrogen-exchange reaction. J. Chem. Phys., 2007, 126(4): 044317
CrossRef
ADS
Google scholar
|
[37] |
J. Huang, D. H. Zhang. An efficient way to incorporate the geometric phase in the time-dependent wave packet calculations in a diabatic representation. J. Chem. Phys., 2020, 153(14): 141102
CrossRef
ADS
Google scholar
|
[38] |
J. F. E. Croft, J. Hazra, N. Balakrishnan, B. K. Kendrick. Symmetry and the geometric phase in ultracold hydrogen exchange reactions. J. Chem. Phys., 2017, 147(7): 074302
CrossRef
ADS
Google scholar
|
[39] |
D. Yuan, Y. Guan, W. Chen, H. Zhao, S. Yu, C. Luo, Y. Tan, T. Xie, X. Wang, Z. Sun, D. H. Zhang, X. Yang. Observation of the geometric phase effect in the H + HD → H2 + D reaction. Science, 2018, 362(6420): 1289
CrossRef
ADS
Google scholar
|
[40] |
Y. Xie, H. Zhao, Y. Wang, Y. Huang, T. Wang, X. Xu, C. Xiao, Z. Sun, D. H. Zhang, X. Yang. Quantum interference in H + HD → H2 + D between direct abstraction and roaming insertion pathways. Science, 2020, 368(6492): 767
CrossRef
ADS
Google scholar
|
[41] |
Y. Wang, D. R. Yarkony. Conical intersection seams in spin–orbit coupled systems with an even number of electrons: A numerical study based on neural network fit surfaces. J. Chem. Phys., 2021, 155(17): 174115
CrossRef
ADS
Google scholar
|
[42] |
T. P. Rakitzis. Transition states and spin-orbit structure. Science, 2021, 371(6532): 886
CrossRef
ADS
Google scholar
|
[43] |
W. Chen, R. Wang, D. Yuan, H. Zhao, C. Luo, Y. Tan, S. Li, D. H. Zhang, X. Wang, Z. Sun, X. Yang. Quantum interference between spin-orbit split partial waves in the F + HD → HF + D reaction. Science, 2021, 371(6532): 936
CrossRef
ADS
Google scholar
|
[44] |
J. Li, M. Sajjan, S. S. Kale, S. Kais. Statistical correlation between quantum entanglement and spin–orbit coupling in crossed beam molecular dynamics. Adv. Quantum Technol., 2021, 4: 2100098
CrossRef
ADS
Google scholar
|
[45] |
T. Zimmermann, J. Vaníček. Evaluation of the importance of spin−orbit couplings in the nonadiabatic quantum dynamics with quantum fidelity and with its efficient “on-the-fly” ab initio semiclassical approximation. J. Chem. Phys., 2012, 137: 22A516
CrossRef
ADS
Google scholar
|
[46] |
Z. Yang, J. Yuan, S. Wang, M. Chen. Global diabatic potential energy surfaces for the BeH2+ system and dynamics studies on the Be+(2P) + H2(X1Σg+) → BeH+(X1Σ+) + H(2S) reaction. RSC Advances, 2018, 8(40): 22823
CrossRef
ADS
Google scholar
|
[47] |
Z. Yang, Y. Mao, M. Chen. Quantum dynamics studies of the significant intramolecular isotope effects on the nonadiabatic Be+(2P) + HD → BeH+/BeD++ D/H reaction. J. Phys. Chem. A, 2021, 125(1): 235
CrossRef
ADS
Google scholar
|
[48] |
Y. Mao, J. Yuan, Z. Yang, M. Chen. Quantum dynamics studies of isotope effects in the Mg+(3p) + HD → MgH+/MgD+ + D/H insertion reaction. Sci. Rep., 2020, 10(1): 3410
CrossRef
ADS
Google scholar
|
[49] |
B. Buren, Y. Mao, Z. Yang, M. Chen. Non-adiabatic couplings induced complex-forming mechanism in H + MgH+ → Mg+ + H2 reaction. Chin. J. Chem. Phys., 2022, 35(2): 345
CrossRef
ADS
Google scholar
|
[50] |
D. He, J. Yuan, H. Li, M. Chen. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X1Σg+) → LiH(X1Σ+) + H reaction. Sci. Rep., 2016, 6: 25083
CrossRef
ADS
Google scholar
|
[51] |
N. D. Coutinho, F. O. Sanches-Neto, V. H. Carvalho-Silva, H. C. B. Oliveira, L. A. Ribeiro, V. Aquilanti. Kinetics of the OH + HCl → H2O + Cl reaction: Rate determining roles of stereodynamics and roaming and of quantum tunneling. J. Comput. Chem., 2018, 39(30): 2508
CrossRef
ADS
Google scholar
|
[52] |
N. D. Coutinho, V. H. Silva, H. C. de Oliveira, A. J. Camargo, K. C. Mundim, V. Aquilanti. Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J. Phys. Chem. Lett., 2015, 6(9): 1553
CrossRef
ADS
Google scholar
|
[53] |
P. Tsai, D. Che, M. Nakamura, K. Lin, T. Kasai. Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Phys. Chem. Chem. Phys., 2011, 13(4): 1419
CrossRef
ADS
Google scholar
|
[54] |
B. Zhao, S. Han, C. L. Malbon, U. Manthe, D. Yarkony, H. Guo. Full-dimensional quantum stereodynamics of the nonadiabatic quenching of OH(A2Σ+) by H2. Nat. Chem., 2021, 13(9): 909
CrossRef
ADS
Google scholar
|
[55] |
B. Buren, M. Chen. Stereodynamics-controlled product branching in the nonadiabatic H + NaD → Na(3s, 3p) + HD reaction at low temperatures. J. Phys. Chem. A, 2022, 126(16): 2453
CrossRef
ADS
Google scholar
|
[56] |
Z. Sun, S. Y. Lee, H. Guo, D. H. Zhang. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. J. Chem. Phys., 2009, 130(17): 174102
CrossRef
ADS
Google scholar
|
[57] |
C. Yao, P. Zhang, Z. Duan, G. Zhao. Influence of collision energy on the dynamics of the reaction H(2S) + NH(X3Σ−) → N(4S) + H2(X1Σg+) by the state-to-state quantum mechanical study. Theor. Chem. Acc., 2014, 133(6): 1489
CrossRef
ADS
Google scholar
|
[58] |
H. Song, S. Y. Lee, Z. Sun, Y. Lu. Time-dependent wave packet state-to-state dynamics of H/D + HCl/DCl reactions. J. Chem. Phys., 2013, 138(5): 054305
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |