Online optimization for optical readout of a single electron spin in diamond
Xue Lin, Jingwei Fan, Runchuan Ye, Mingti Zhou, Yumeng Song, Dawei Lu, Nanyang Xu
Online optimization for optical readout of a single electron spin in diamond
The nitrogen-vacancy (NV) center in diamond has been developed as a promising platform for quantum sensing, especially for magnetic field measurements in the nano-tesla range with a nano-meter resolution. Optical spin readout performance has a direct effect on the signal-to-noise ratio (SNR) of experiments. In this work, we introduce an online optimization method to customize the laser waveform for readout. Both simulations and experiments reveal that our new scheme optimizes the optically detected magnetic resonance in NV center. The SNR of optical spin readout has been witnessed a 44.1% increase in experiments. In addition, we applied the scheme to the Rabi oscillation experiment, which shows an improvement of 46.0% in contrast and a reduction of 12.1% in mean deviation compared to traditional constant laser power SNR optimization. This scheme is promising to improve sensitivities for a wide range of NV-based applications in the future.
NV center / readout / signal-to-noise ratio / online optimization
[1] |
G. Balasubramanian , I. Y. Chan , R. Kolesov , M. Al-Hmoud , J. Tisler , C. Shin , C. Kim , A. Wojcik , P. R. Hemmer , A. Krueger , T. Hanke , A. Leitenstorfer , R. Bratschitsch , F. Jelezko , J. Wrachtrup . Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 2008, 455(7213): 648
CrossRef
ADS
Google scholar
|
[2] |
I. Jakobi , P. Neumann , Y. Wang , D. B. R. Dasari , F. El Hallak , M. A. Bashir , M. Markham , A. Edmonds , D. Twitchen , J. Wrachtrup . Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotechnol., 2017, 12(1): 67
CrossRef
ADS
Google scholar
|
[3] |
J. R. Maze , P. L. Stanwix , J. S. Hodges , S. Hong , J. M. Taylor , P. Cappellaro , L. Jiang , M. V. G. Dutt , E. Togan , A. S. Zibrov , A. Yacoby , R. L. Walsworth , M. D. Lukin . Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455(7213): 644
CrossRef
ADS
Google scholar
|
[4] |
S. Zaiser , T. Rendler , I. Jakobi , T. Wolf , S. Y. Lee , S. Wagner , V. Bergholm , T. Schulte-Herbrggen , P. Neumann , J. Wrachtrup . Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun., 2016, 7(1): 12279
CrossRef
ADS
Google scholar
|
[5] |
T. Unden , P. Balasubramanian , D. Louzon , Y. Vinkler , M. Plenio , M. Markham , D. Twitchen , A. Stacey , I. Lovchinsky , A. Sushkov , M. Lukin , A. Retzker , B. Naydenov , L. McGuinness , F. Jelezko . Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett., 2016, 116(23): 230502
CrossRef
ADS
Google scholar
|
[6] |
C. L. Degen . Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett., 2008, 92(24): 243111
CrossRef
ADS
Google scholar
|
[7] |
J. Zhou , P. Wang , F. Shi , P. Huang , X. Kong , X. Xu , Q. Zhang , Z. Wang , X. Rong , J. Du . Quantum information processing and metrology with color centers in diamonds. Front. Phys., 2014, 9(5): 587
CrossRef
ADS
Google scholar
|
[8] |
F. Dolde , H. Fedder , M. W. Doherty , T. Nbauer , F. Rempp , G. Balasubramanian , T. Wolf , F. Reinhard , L. C. L. Hollenberg , F. Jelezko , J. Wrachtrup . Electric-field sensing using single diamond spins. Nat. Phys., 2011, 7(6): 459
CrossRef
ADS
Google scholar
|
[9] |
G. Kucsko , P. C. Maurer , N. Y. Yao , M. Kubo , H. J. Noh , P. K. Lo , H. Park , M. D. Lukin . Nanometre-scale thermometry in a living cell. Nature, 2013, 500(7460): 54
CrossRef
ADS
Google scholar
|
[10] |
D. M. Toyli , C. F. de las Casas , D. J. Christle , V. V. Dobrovitski , D. D. Awschalom . Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA, 2013, 110(21): 8417
CrossRef
ADS
Google scholar
|
[11] |
S. Hsieh , P. Bhattacharyya , C. Zu , T. Mittiga , T. J. Smart , F. Machado , B. Kobrin , T. O. Hhn , N. Z. Rui , M. Kamrani , S. Chatterjee , S. Choi , M. Zaletel , V. V. Struzhkin , J. E. Moore , V. I. Levitas , R. Jeanloz , N. Y. Yao . Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science, 2019, 366(6471): 1349
CrossRef
ADS
Google scholar
|
[12] |
T. Staudacher , F. Shi , S. Pezzagna , J. Meijer , J. Du , C. A. Meriles , F. Reinhard , J. Wrachtrup . Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science, 2013, 339(6119): 561
CrossRef
ADS
Google scholar
|
[13] |
F. Shi , Q. Zhang , P. Wang , H. Sun , J. Wang , X. Rong , M. Chen , C. Ju , F. Reinhard , H. Chen , J. Wrachtrup , J. Wang , J. Du . Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226): 1135
CrossRef
ADS
Google scholar
|
[14] |
J. P. Tetienne , T. Hingant , J. V. Kim , L. H. Diez , J. P. Adam , K. Garcia , J. F. Roch , S. Rohart , A. Thiaville , D. Ravelosona , V. Jacques . Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science, 2014, 344(6190): 1366
CrossRef
ADS
Google scholar
|
[15] |
C. L. Degen , M. Poggio , H. J. Mamin , C. T. Rettner , D. Rugar . Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 2009, 106(5): 1313
CrossRef
ADS
Google scholar
|
[16] |
C.L. DegenF.ReinhardP.Cappellaro, Quantum sensing, Rev. Mod. Phys. 89(3), 035002 (2017) (rMP.)
|
[17] |
J. F. Barry , J. M. Schloss , E. Bauch , M. J. Turner , C. A. Hart , L. M. Pham , R. L. Walsworth . Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 2020, 92(1): 015004
CrossRef
ADS
Google scholar
|
[18] |
J. F. Barry , M. J. Turner , J. M. Schloss , D. R. Glenn , Y. Song , M. D. Lukin , H. Park , R. L. Walsworth . Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA, 2016, 113(49): 14133
CrossRef
ADS
Google scholar
|
[19] |
H. C. Davis , P. Ramesh , A. Bhatnagar , A. Lee-Gosselin , J. F. Barry , D. R. Glenn , R. L. Walsworth , M. G. Shapiro . Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nat. Commun., 2018, 9(1): 131
CrossRef
ADS
Google scholar
|
[20] |
D.A. HopperR.R. GroteA.L. ExarhosL.C. Bassett, Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond, Phys. Rev. B 94(24), 241201 (2016) (pRB.)
|
[21] |
P. Neumann , J. Beck , M. Steiner , F. Rempp , H. Fedder , P. R. Hemmer , J. Wrachtrup , F. Jelezko . Single-shot readout of a single nuclear spin. Science, 2010, 329(5991): 542
CrossRef
ADS
Google scholar
|
[22] |
P. Qian , X. Lin , F. Zhou , R. Ye , Y. Ji , B. Chen , G. Xie , N. Xu . Machine-learning-assisted electron-spin readout of nitrogen-vacancy center in diamond. Appl. Phys. Lett., 2021, 118(8): 084001
CrossRef
ADS
Google scholar
|
[23] |
Y. Song , Y. Tian , Z. Hu , F. Zhou , T. Xing , D. Lu , B. Chen , Y. Wang , N. Xu , J. Du . Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photon. Res., 2020, 8(8): 1289
CrossRef
ADS
Google scholar
|
[24] |
T. Liu , J. Zhang , H. Yuan , L. Xu , G. Bian , P. Fan , M. Li , Y. Liu , S. Xia , C. Xu , X. Xiao . A pulsed time-varying method for improving the spin readout efficiency of nitrogen vacancy centers. J. Phys. D, 2021, 54(39): 395002
CrossRef
ADS
Google scholar
|
[25] |
N. Oshnik , P. Rembold , T. Calarco , S. Montangero , E. Neu , M. M. Müller . Robust magnetometry with single nitrogen-vacancy centers via two-step optimization. Phys. Rev. A, 2022, 106(1): 013107
CrossRef
ADS
Google scholar
|
[26] |
B. Bauer , D. Wecker , A. J. Millis , M. B. Hastings , M. Troyer . Hybrid quantum-classical approach to correlated materials. Phys. Rev. X, 2016, 6(3): 031045
CrossRef
ADS
Google scholar
|
[27] |
S. Bravyi , G. Smith , J. A. Smolin . Trading classical and quantum computational resources. Phys. Rev. X, 2016, 6(2): 021043
CrossRef
ADS
Google scholar
|
[28] |
J. R. McClean , J. Romero , R. Babbush , A. Aspuru-Guzik . The theory of variational hybrid quantum-classical algorithms. New J. Phys., 2016, 18(2): 023023
CrossRef
ADS
Google scholar
|
[29] |
D. Suter , F. Jelezko . Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog. Nucl. Magn. Reson. Spectrosc., 2017,
CrossRef
ADS
Google scholar
|
[30] |
M. W. Doherty , N. B. Manson , P. Delaney , F. Jelezko , J. Wrachtrup , L. C. L. Hollenberg . The nitrogen-vacancy colour centre in diamond. Phys. Rep., 2013, 528(1): 1
CrossRef
ADS
Google scholar
|
[31] |
M. W. Doherty , N. B. Manson , P. Delaney , L. C. L. Hollenberg . The negatively charged nitrogen-vacancy centre in diamond: The electronic solution. New J. Phys., 2011, 13(2): 025019
CrossRef
ADS
Google scholar
|
[32] |
B. Chen , X. Hou , F. Zhou , P. Qian , H. Shen , N. Xu . Detecting the out-of-time-order correlations of dynamical quantum phase transitions in a solid-state quantum simulator. Appl. Phys. Lett., 2020, 116(19): 194002
CrossRef
ADS
Google scholar
|
[33] |
G. D. Fuchs , V. V. Dobrovitski , D. M. Toyli , F. J. Heremans , C. D. Weis , T. Schenkel , D. D. Awschalom . Excited-state spin coherence of a single nitrogen–vacancy centre in diamond. Nat. Phys., 2010, 6(9): 668
CrossRef
ADS
Google scholar
|
[34] |
M.L. GoldmanA.SipahigilM.W. DohertyN.Y. YaoS.D. BennettM.MarkhamD.J. TwitchenN.B. MansonA.KubanekM.D. Lukin, Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers, Phys. Rev. Lett. 114(14), 145502 (2015)
|
[35] |
N. B. Manson , J. P. Harrison , M. J. Sellars . Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B, 2006, 74(10): 104303
CrossRef
ADS
Google scholar
|
[36] |
M.SteinerP.NeumannJ.BeckF.JelezkoJ.Wrachtrup, Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond, Phys. Rev. B 81(3), 035205 (2010)
|
[37] |
S.A. WolfI.RosenbergR.RapaportN.Bar-Gill, Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond, Phys. Rev. B 92(23), 235410 (2015)
|
[38] |
J. G. Skellam . The frequency distribution of the difference between two poisson variates belonging to different populations. J. R. Stat. Soc., 1946, 109(3): 296
CrossRef
ADS
Google scholar
|
[39] |
X. Yang , X. Chen , J. Li , X. Peng , R. Laamme . Hybrid quantum-classical approach to enhanced quantum metrology. Sci. Rep., 2021, 11: 672
CrossRef
ADS
Google scholar
|
[40] |
J. Li , X. Yang , X. Peng , C. P. Sun . Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
CrossRef
ADS
Google scholar
|
[41] |
D. Lu , K. Li , J. Li , H. Katiyar , A. J. Park , G. Feng , T. Xin , H. Li , G. Long , A. Brodutch , J. Baugh , B. Zeng , R. Laamme . Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inform., 2017, 3: 45
CrossRef
ADS
Google scholar
|
[42] |
T. Xin , X. Nie , X. Kong , J. Wen , D. Lu , J. Li . Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
CrossRef
ADS
Google scholar
|
[43] |
G. Bhole , J. A. Jones . Practical pulse engineering: Gradient ascent without matrix exponentiation. Front. Phys., 2018, 13(3): 130312
CrossRef
ADS
Google scholar
|
[44] |
Y. Ouyang , C. Yu , G. Yan , J. Chen . Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys., 2021, 16(4): 43200
CrossRef
ADS
Google scholar
|
[45] |
X. Li , W. Yu , X. Fan , G. J. Babu . Some optimizations on detecting gravitational wave using convolutional neural network. Front. Phys., 2020, 15(5): 54501
CrossRef
ADS
Google scholar
|
[46] |
R. M. Lewis , V. Torczon , M. W. Trosset . Direct search methods: Then and now. J. Comput. Appl. Math., 2000, 124(1-2): 191
CrossRef
ADS
Google scholar
|
[47] |
A. E. Eiben , J. Smith . From evolutionary computation to the evolution of things. Nature, 2015, 521(7553): 476
CrossRef
ADS
Google scholar
|
[48] |
R. Hooke , T. A. Jeeves . “Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach., 1961, 8(2): 212
CrossRef
ADS
Google scholar
|
[49] |
D. A. Golter , H. Wang . Optically driven rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett., 2014, 112(11): 116403
CrossRef
ADS
Google scholar
|
[50] |
L.RobledoH.BernienI.van WeperenR.Hanson, Control and coherence of the optical transition of single nitrogen vacancy centers in diamond, Phys. Rev. Lett. 105(17), 177403 (2010)
|
[51] |
D. A. Hopper , H. J. Shulevitz , L. C. Bassett . Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines (Basel), 2018, 9(9): 437
CrossRef
ADS
Google scholar
|
[52] |
L. M. Pham , N. Bar-Gill , C. Belthangady , D. Le Sage , P. Cappellaro , M. D. Lukin , A. Yacoby , R. L. Walsworth . Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. B, 2012, 86(4): 045214
CrossRef
ADS
Google scholar
|
[53] |
M. V. G. Dutt , L. Childress , L. Jiang , E. Togan , J. Maze , F. Jelezko , A. S. Zibrov , P. R. Hemmer , M. D. Lukin . Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316(5829): 1312
CrossRef
ADS
Google scholar
|
[54] |
L. M. Pham , D. L. Sage , P. L. Stanwix , T. K. Yeung , D. Glenn , A. Trifonov , P. Cappellaro , P. R. Hemmer , M. D. Lukin , H. Park , A. Yacoby , R. L. Walsworth . Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys., 2011, 13(4): 045021
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |