Online optimization for optical readout of a single electron spin in diamond

Xue Lin, Jingwei Fan, Runchuan Ye, Mingti Zhou, Yumeng Song, Dawei Lu, Nanyang Xu

PDF(3350 KB)
PDF(3350 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 21301. DOI: 10.1007/s11467-022-1235-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Online optimization for optical readout of a single electron spin in diamond

Author information +
History +

Abstract

The nitrogen-vacancy (NV) center in diamond has been developed as a promising platform for quantum sensing, especially for magnetic field measurements in the nano-tesla range with a nano-meter resolution. Optical spin readout performance has a direct effect on the signal-to-noise ratio (SNR) of experiments. In this work, we introduce an online optimization method to customize the laser waveform for readout. Both simulations and experiments reveal that our new scheme optimizes the optically detected magnetic resonance in NV center. The SNR of optical spin readout has been witnessed a 44.1% increase in experiments. In addition, we applied the scheme to the Rabi oscillation experiment, which shows an improvement of 46.0% in contrast and a reduction of 12.1% in mean deviation compared to traditional constant laser power SNR optimization. This scheme is promising to improve sensitivities for a wide range of NV-based applications in the future.

Graphical abstract

Keywords

NV center / readout / signal-to-noise ratio / online optimization

Cite this article

Download citation ▾
Xue Lin, Jingwei Fan, Runchuan Ye, Mingti Zhou, Yumeng Song, Dawei Lu, Nanyang Xu. Online optimization for optical readout of a single electron spin in diamond. Front. Phys., 2023, 18(2): 21301 https://doi.org/10.1007/s11467-022-1235-5

References

[1]
G. Balasubramanian , I. Y. Chan , R. Kolesov , M. Al-Hmoud , J. Tisler , C. Shin , C. Kim , A. Wojcik , P. R. Hemmer , A. Krueger , T. Hanke , A. Leitenstorfer , R. Bratschitsch , F. Jelezko , J. Wrachtrup . Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 2008, 455(7213): 648
CrossRef ADS Google scholar
[2]
I. Jakobi , P. Neumann , Y. Wang , D. B. R. Dasari , F. El Hallak , M. A. Bashir , M. Markham , A. Edmonds , D. Twitchen , J. Wrachtrup . Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotechnol., 2017, 12(1): 67
CrossRef ADS Google scholar
[3]
J. R. Maze , P. L. Stanwix , J. S. Hodges , S. Hong , J. M. Taylor , P. Cappellaro , L. Jiang , M. V. G. Dutt , E. Togan , A. S. Zibrov , A. Yacoby , R. L. Walsworth , M. D. Lukin . Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455(7213): 644
CrossRef ADS Google scholar
[4]
S. Zaiser , T. Rendler , I. Jakobi , T. Wolf , S. Y. Lee , S. Wagner , V. Bergholm , T. Schulte-Herbrggen , P. Neumann , J. Wrachtrup . Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun., 2016, 7(1): 12279
CrossRef ADS Google scholar
[5]
T. Unden , P. Balasubramanian , D. Louzon , Y. Vinkler , M. Plenio , M. Markham , D. Twitchen , A. Stacey , I. Lovchinsky , A. Sushkov , M. Lukin , A. Retzker , B. Naydenov , L. McGuinness , F. Jelezko . Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett., 2016, 116(23): 230502
CrossRef ADS Google scholar
[6]
C. L. Degen . Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett., 2008, 92(24): 243111
CrossRef ADS Google scholar
[7]
J. Zhou , P. Wang , F. Shi , P. Huang , X. Kong , X. Xu , Q. Zhang , Z. Wang , X. Rong , J. Du . Quantum information processing and metrology with color centers in diamonds. Front. Phys., 2014, 9(5): 587
CrossRef ADS Google scholar
[8]
F. Dolde , H. Fedder , M. W. Doherty , T. Nbauer , F. Rempp , G. Balasubramanian , T. Wolf , F. Reinhard , L. C. L. Hollenberg , F. Jelezko , J. Wrachtrup . Electric-field sensing using single diamond spins. Nat. Phys., 2011, 7(6): 459
CrossRef ADS Google scholar
[9]
G. Kucsko , P. C. Maurer , N. Y. Yao , M. Kubo , H. J. Noh , P. K. Lo , H. Park , M. D. Lukin . Nanometre-scale thermometry in a living cell. Nature, 2013, 500(7460): 54
CrossRef ADS Google scholar
[10]
D. M. Toyli , C. F. de las Casas , D. J. Christle , V. V. Dobrovitski , D. D. Awschalom . Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA, 2013, 110(21): 8417
CrossRef ADS Google scholar
[11]
S. Hsieh , P. Bhattacharyya , C. Zu , T. Mittiga , T. J. Smart , F. Machado , B. Kobrin , T. O. Hhn , N. Z. Rui , M. Kamrani , S. Chatterjee , S. Choi , M. Zaletel , V. V. Struzhkin , J. E. Moore , V. I. Levitas , R. Jeanloz , N. Y. Yao . Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science, 2019, 366(6471): 1349
CrossRef ADS Google scholar
[12]
T. Staudacher , F. Shi , S. Pezzagna , J. Meijer , J. Du , C. A. Meriles , F. Reinhard , J. Wrachtrup . Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science, 2013, 339(6119): 561
CrossRef ADS Google scholar
[13]
F. Shi , Q. Zhang , P. Wang , H. Sun , J. Wang , X. Rong , M. Chen , C. Ju , F. Reinhard , H. Chen , J. Wrachtrup , J. Wang , J. Du . Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226): 1135
CrossRef ADS Google scholar
[14]
J. P. Tetienne , T. Hingant , J. V. Kim , L. H. Diez , J. P. Adam , K. Garcia , J. F. Roch , S. Rohart , A. Thiaville , D. Ravelosona , V. Jacques . Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science, 2014, 344(6190): 1366
CrossRef ADS Google scholar
[15]
C. L. Degen , M. Poggio , H. J. Mamin , C. T. Rettner , D. Rugar . Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 2009, 106(5): 1313
CrossRef ADS Google scholar
[16]
C.L. DegenF.ReinhardP.Cappellaro, Quantum sensing, Rev. Mod. Phys. 89(3), 035002 (2017) (rMP.)
[17]
J. F. Barry , J. M. Schloss , E. Bauch , M. J. Turner , C. A. Hart , L. M. Pham , R. L. Walsworth . Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 2020, 92(1): 015004
CrossRef ADS Google scholar
[18]
J. F. Barry , M. J. Turner , J. M. Schloss , D. R. Glenn , Y. Song , M. D. Lukin , H. Park , R. L. Walsworth . Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA, 2016, 113(49): 14133
CrossRef ADS Google scholar
[19]
H. C. Davis , P. Ramesh , A. Bhatnagar , A. Lee-Gosselin , J. F. Barry , D. R. Glenn , R. L. Walsworth , M. G. Shapiro . Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nat. Commun., 2018, 9(1): 131
CrossRef ADS Google scholar
[20]
D.A. HopperR.R. GroteA.L. ExarhosL.C. Bassett, Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond, Phys. Rev. B 94(24), 241201 (2016) (pRB.)
[21]
P. Neumann , J. Beck , M. Steiner , F. Rempp , H. Fedder , P. R. Hemmer , J. Wrachtrup , F. Jelezko . Single-shot readout of a single nuclear spin. Science, 2010, 329(5991): 542
CrossRef ADS Google scholar
[22]
P. Qian , X. Lin , F. Zhou , R. Ye , Y. Ji , B. Chen , G. Xie , N. Xu . Machine-learning-assisted electron-spin readout of nitrogen-vacancy center in diamond. Appl. Phys. Lett., 2021, 118(8): 084001
CrossRef ADS Google scholar
[23]
Y. Song , Y. Tian , Z. Hu , F. Zhou , T. Xing , D. Lu , B. Chen , Y. Wang , N. Xu , J. Du . Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photon. Res., 2020, 8(8): 1289
CrossRef ADS Google scholar
[24]
T. Liu , J. Zhang , H. Yuan , L. Xu , G. Bian , P. Fan , M. Li , Y. Liu , S. Xia , C. Xu , X. Xiao . A pulsed time-varying method for improving the spin readout efficiency of nitrogen vacancy centers. J. Phys. D, 2021, 54(39): 395002
CrossRef ADS Google scholar
[25]
N. Oshnik , P. Rembold , T. Calarco , S. Montangero , E. Neu , M. M. Müller . Robust magnetometry with single nitrogen-vacancy centers via two-step optimization. Phys. Rev. A, 2022, 106(1): 013107
CrossRef ADS Google scholar
[26]
B. Bauer , D. Wecker , A. J. Millis , M. B. Hastings , M. Troyer . Hybrid quantum-classical approach to correlated materials. Phys. Rev. X, 2016, 6(3): 031045
CrossRef ADS Google scholar
[27]
S. Bravyi , G. Smith , J. A. Smolin . Trading classical and quantum computational resources. Phys. Rev. X, 2016, 6(2): 021043
CrossRef ADS Google scholar
[28]
J. R. McClean , J. Romero , R. Babbush , A. Aspuru-Guzik . The theory of variational hybrid quantum-classical algorithms. New J. Phys., 2016, 18(2): 023023
CrossRef ADS Google scholar
[29]
D. Suter , F. Jelezko . Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog. Nucl. Magn. Reson. Spectrosc., 2017, 98–99, 50
CrossRef ADS Google scholar
[30]
M. W. Doherty , N. B. Manson , P. Delaney , F. Jelezko , J. Wrachtrup , L. C. L. Hollenberg . The nitrogen-vacancy colour centre in diamond. Phys. Rep., 2013, 528(1): 1
CrossRef ADS Google scholar
[31]
M. W. Doherty , N. B. Manson , P. Delaney , L. C. L. Hollenberg . The negatively charged nitrogen-vacancy centre in diamond: The electronic solution. New J. Phys., 2011, 13(2): 025019
CrossRef ADS Google scholar
[32]
B. Chen , X. Hou , F. Zhou , P. Qian , H. Shen , N. Xu . Detecting the out-of-time-order correlations of dynamical quantum phase transitions in a solid-state quantum simulator. Appl. Phys. Lett., 2020, 116(19): 194002
CrossRef ADS Google scholar
[33]
G. D. Fuchs , V. V. Dobrovitski , D. M. Toyli , F. J. Heremans , C. D. Weis , T. Schenkel , D. D. Awschalom . Excited-state spin coherence of a single nitrogen–vacancy centre in diamond. Nat. Phys., 2010, 6(9): 668
CrossRef ADS Google scholar
[34]
M.L. GoldmanA.SipahigilM.W. DohertyN.Y. YaoS.D. BennettM.MarkhamD.J. TwitchenN.B. MansonA.KubanekM.D. Lukin, Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers, Phys. Rev. Lett. 114(14), 145502 (2015)
[35]
N. B. Manson , J. P. Harrison , M. J. Sellars . Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B, 2006, 74(10): 104303
CrossRef ADS Google scholar
[36]
M.SteinerP.NeumannJ.BeckF.JelezkoJ.Wrachtrup, Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond, Phys. Rev. B 81(3), 035205 (2010)
[37]
S.A. WolfI.RosenbergR.RapaportN.Bar-Gill, Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond, Phys. Rev. B 92(23), 235410 (2015)
[38]
J. G. Skellam . The frequency distribution of the difference between two poisson variates belonging to different populations. J. R. Stat. Soc., 1946, 109(3): 296
CrossRef ADS Google scholar
[39]
X. Yang , X. Chen , J. Li , X. Peng , R. Laamme . Hybrid quantum-classical approach to enhanced quantum metrology. Sci. Rep., 2021, 11: 672
CrossRef ADS Google scholar
[40]
J. Li , X. Yang , X. Peng , C. P. Sun . Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
CrossRef ADS Google scholar
[41]
D. Lu , K. Li , J. Li , H. Katiyar , A. J. Park , G. Feng , T. Xin , H. Li , G. Long , A. Brodutch , J. Baugh , B. Zeng , R. Laamme . Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inform., 2017, 3: 45
CrossRef ADS Google scholar
[42]
T. Xin , X. Nie , X. Kong , J. Wen , D. Lu , J. Li . Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
CrossRef ADS Google scholar
[43]
G. Bhole , J. A. Jones . Practical pulse engineering: Gradient ascent without matrix exponentiation. Front. Phys., 2018, 13(3): 130312
CrossRef ADS Google scholar
[44]
Y. Ouyang , C. Yu , G. Yan , J. Chen . Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys., 2021, 16(4): 43200
CrossRef ADS Google scholar
[45]
X. Li , W. Yu , X. Fan , G. J. Babu . Some optimizations on detecting gravitational wave using convolutional neural network. Front. Phys., 2020, 15(5): 54501
CrossRef ADS Google scholar
[46]
R. M. Lewis , V. Torczon , M. W. Trosset . Direct search methods: Then and now. J. Comput. Appl. Math., 2000, 124(1-2): 191
CrossRef ADS Google scholar
[47]
A. E. Eiben , J. Smith . From evolutionary computation to the evolution of things. Nature, 2015, 521(7553): 476
CrossRef ADS Google scholar
[48]
R. Hooke , T. A. Jeeves . “Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach., 1961, 8(2): 212
CrossRef ADS Google scholar
[49]
D. A. Golter , H. Wang . Optically driven rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett., 2014, 112(11): 116403
CrossRef ADS Google scholar
[50]
L.RobledoH.BernienI.van WeperenR.Hanson, Control and coherence of the optical transition of single nitrogen vacancy centers in diamond, Phys. Rev. Lett. 105(17), 177403 (2010)
[51]
D. A. Hopper , H. J. Shulevitz , L. C. Bassett . Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines (Basel), 2018, 9(9): 437
CrossRef ADS Google scholar
[52]
L. M. Pham , N. Bar-Gill , C. Belthangady , D. Le Sage , P. Cappellaro , M. D. Lukin , A. Yacoby , R. L. Walsworth . Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. B, 2012, 86(4): 045214
CrossRef ADS Google scholar
[53]
M. V. G. Dutt , L. Childress , L. Jiang , E. Togan , J. Maze , F. Jelezko , A. S. Zibrov , P. R. Hemmer , M. D. Lukin . Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316(5829): 1312
CrossRef ADS Google scholar
[54]
L. M. Pham , D. L. Sage , P. L. Stanwix , T. K. Yeung , D. Glenn , A. Trifonov , P. Cappellaro , P. R. Hemmer , M. D. Lukin , H. Park , A. Yacoby , R. L. Walsworth . Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys., 2011, 13(4): 045021
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1235-5 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1235-5 and are accessible for authorized users.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306600 and 2019YFA0308100), the National Natural Science Foundation of China (Grant Nos. 92265114, 92265204, and 11875159), and the Research Initiation Project (No. K2022MB0PI02) of Zhejiang Lab.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3350 KB)

Accesses

Citations

Detail

Sections
Recommended

/