Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance

Qiugang Liao, Hao Liu, Ziqiang Chen, Yinggan Zhang, Rui Xiong, Zhou Cui, Cuilian Wen, Baisheng Sa

PDF(5495 KB)
PDF(5495 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33300. DOI: 10.1007/s11467-022-1234-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance

Author information +
History +

Abstract

With the development of modern electronics, especially the next generation of wearable electromagnetic interference (EMI) shielding materials requires flexibility, ultrathin, lightweight and robustness to protect electronic devices from radiation pollution. In this work, the flexible and ultrathin dopamine modified MXene@cellulose nanofiber (DM@CNF) composite films with alternate multilayer structure have been developed by a facile vacuum filtration induced self-assembly approach. The multilayered DM@CNF composite films exhibit improved mechanical properties compared with the homogeneous DM/CNF film. By adjusting the layer number, the multilayered DM3@CNF2 composite film exhibits a tensile strength of 48.14 MPa and a toughness of 5.28 MJ·m−3 with a thickness about 19 μm. Interestingly that, the DM@CNF film with annealing treatment achieves significant improvement in conductivity (up to 17264 S·m−1) and EMI properties (SE of 41.90 dB and SSE/t of 10169 dB·cm2·g−1), which still maintains relatively high mechanical properties. It is highlighted that the ultrathin multilayered DM@CNF film exhibits superior EMI shielding performance compared with most of the metal-based, carbon-based and MXene-based shielding materials reported in the literature. These results will offer an appealing strategy to develop the ultrathin and flexible MXene-based materials with excellent EMI shielding performance for the next generation intelligent protection devices.

Graphical abstract

Keywords

MXene / dopamine / cellulose nanofibers / electromagnetic interference shielding performance / mechanical properties

Cite this article

Download citation ▾
Qiugang Liao, Hao Liu, Ziqiang Chen, Yinggan Zhang, Rui Xiong, Zhou Cui, Cuilian Wen, Baisheng Sa. Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance. Front. Phys., 2023, 18(3): 33300 https://doi.org/10.1007/s11467-022-1234-6

References

[1]
F.ShahzadA.IqbalH.KimC.M. Koo, 2D transition metal carbides (MXenes): Applications as an electrically conducting material, Adv. Mater. 32(51), 2002159 (2020)
[2]
D. W. Jiang , V. Murugadoss , Y. Wang , J. Lin , T. Ding , Z. C. Wang , Q. Shao , C. Wang , H. Liu , N. Lu , R. B. Wei , A. Subramania , Z. H. Guo . Electromagnetic interference shielding polymers and nanocomposites - A review. Polym. Rev. (Phila. Pa. ), 2019, 59(2): 280
CrossRef ADS Google scholar
[3]
C. Xiang , R. H. Guo , S. J. Lin , S. X. Jiang , J. W. Lan , C. Wang , C. Cui , H. Y. Xiao , Y. Zhang . Lightweight and ultrathin TiO2-Ti3C2Tx/graphene film with electromagnetic interference shielding. Chem. Eng. J., 2019, 360: 1158
CrossRef ADS Google scholar
[4]
R. T. Liu , M. Miao , Y. H. Li , J. F. Zhang , S. M. Cao , X. Feng . Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2018, 10(51): 44787
CrossRef ADS Google scholar
[5]
H. Abbasi , M. Antunes , J. I. Velasco . Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci., 2019, 103: 319
CrossRef ADS Google scholar
[6]
M. Hu , N. Zhang , G. Shan , J. Gao , J. Liu , R. K. Y. Li . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13(4): 138113
CrossRef ADS Google scholar
[7]
X. Li , G. C. Shan , R. G. Ma , C. H. Shek , H. B. Zhao , S. Ramakrishna . Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications. Front. Phys., 2022, 17(6): 63501
CrossRef ADS Google scholar
[8]
B.LiuL.Y. QianY.L. ZhaoY.W. ZhangF.LiuY.ZhangY.Q. XieW.Z. Shi, A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects, Front. Phys. 17(5), 53501 (2022)
[9]
B. Wen , M. S. Cao , M. M. Lu , W. Q. Cao , H. L. Shi , J. Liu , X. X. Wang , H. B. Jin , X. Y. Fang , W. Z. Wang , J. Yuan . Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater., 2014, 26(21): 3484
CrossRef ADS Google scholar
[10]
B. Shen , W. T. Zhai , W. G. Zheng . Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater., 2014, 24(28): 4542
CrossRef ADS Google scholar
[11]
Y. Han , H. Zhong , N. Liu , Y. X. Liu , J. Lin , P. Jin . In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater., 2018, 4(11): 1800156
CrossRef ADS Google scholar
[12]
Y. Z. Feng , B. Wang , X. W. Li , Y. S. Ye , J. M. Ma , C. T. Liu , X. P. Zhou , X. L. Xie . Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis. Carbon, 2019, 146: 650
CrossRef ADS Google scholar
[13]
Y. Z. Feng , G. J. Han , B. Wang , X. P. Zhou , J. M. Ma , Y. S. Ye , C. T. Liu , X. L. Xie . Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chem. Eng. J., 2020, 379: 122402
CrossRef ADS Google scholar
[14]
X. F. Meng , D. H. Li , X. Q. Shen , W. Liu . Preparation and magnetic properties of nano-Ni coated cenosphere composites. Appl. Surf. Sci., 2010, 256(12): 3753
CrossRef ADS Google scholar
[15]
W. L. Song , X. T. Guan , L. Z. Fan , W. Q. Cao , C. Y. Wang , Q. L. Zhao , M. S. Cao . Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A, 2015, 3(5): 2097
CrossRef ADS Google scholar
[16]
K. S. Novoselov , D. V. Andreeva , W. C. Ren , G. C. Shan . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
CrossRef ADS Google scholar
[17]
Y. C. Wang , L. H. Yao , Q. Zheng , M. S. Cao . Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., 2022, 15(7): 6751
CrossRef ADS Google scholar
[18]
M. S. Cao , W. L. Song , Z. L. Hou , B. Wen , J. Yuan . The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48(3): 788
CrossRef ADS Google scholar
[19]
L. H. Yao , W. Q. Cao , J. G. Zhao , Q. Zheng , Y. C. Wang , S. Jiang , Q. L. Pan , J. Song , Y. Q. Zhu , M. S. Cao . Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol., 2022, 127: 48
CrossRef ADS Google scholar
[20]
L. C. Jia , G. Q. Zhang , L. Xu , W. J. Sun , G. J. Zhong , J. Lei , D. X. Yan , Z. M. Li . Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2019, 11(1): 1680
CrossRef ADS Google scholar
[21]
L. C. Jia , C. G. Zhou , W. J. Sun , L. Xu , D. X. Yan , Z. M. Li . Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J., 2020, 384: 123368
CrossRef ADS Google scholar
[22]
L. C. Jia , K. Q. Ding , R. J. Ma , H. L. Wang , W. J. Sun , D. X. Yan , B. Li , Z. M. Li . Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol., 2019, 4(2): 1800503
CrossRef ADS Google scholar
[23]
G. M. Weng , J. Y. Li , M. Alhabeb , C. Karpovich , H. Wang , J. Lipton , K. Maleski , J. Kong , E. Shaulsky , M. Elimelech , Y. Gogotsi , A. D. Taylor . Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater., 2018, 28(44): 1803360
CrossRef ADS Google scholar
[24]
M. Crespo , M. González , A. L. Elías , L. Pulickal Rajukumar , J. Baselga , M. Terrones , J. Pozuelo . Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi Rapid Res. Lett., 2014, 8(8): 698
CrossRef ADS Google scholar
[25]
Z. Li , L. Yu , C. Milligan , T. Ma , L. Zhou , Y. R. Cui , Z. Y. Qi , N. Libretto , B. Xu , J. W. Luo , E. Z. Shi , Z. W. Wu , H. L. Xin , W. N. Delgass , J. T. Miller , Y. Wu . Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nat. Commun., 2018, 9(1): 5258
CrossRef ADS Google scholar
[26]
M. R. Lukatskaya , S. Kota , Z. F. Lin , M. Q. Zhao , N. Shpigel , M. D. Levi , J. Halim , P. L. Taberna , M. Barsoum , P. Simon , Y. Gogotsi . Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy, 2017, 2(8): 17105
CrossRef ADS Google scholar
[27]
B.AnasoriM.R. LukatskayaY.Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
[28]
H. Lin , Y. Chen , J. L. Shi . Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead. Adv. Sci. (Weinh.), 2018, 5(10): 1800518
CrossRef ADS Google scholar
[29]
M. Carey , M. W. Barsoum . MXene polymer nanocomposites: A review. Mater. Today Adv., 2021, 9: 100120
CrossRef ADS Google scholar
[30]
J. Z. Zhang , N. Kong , S. Uzun , A. Levitt , S. Seyedin , P. A. Lynch , S. Qin , M. K. Han , W. R. Yang , J. Q. Liu , X. G. Wang , Y. Gogotsi , J. M. Razal . Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater., 2020, 32(23): 2001093
CrossRef ADS Google scholar
[31]
M. Naguib , O. Mashtalir , J. Carle , V. Presser , J. Lu , L. Hultman , Y. Gogotsi , M. W. Barsoum . Two-dimensional transition metal carbides. ACS Nano, 2012, 6(2): 1322
CrossRef ADS Google scholar
[32]
C. Zhan , M. Naguib , M. Lukatskaya , P. R. C. Kent , Y. Gogotsi , D. E. Jiang . Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett., 2018, 9(6): 1223
CrossRef ADS Google scholar
[33]
J. C. Lei , X. Zhang , Z. Zhou . Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3): 276
CrossRef ADS Google scholar
[34]
J. Liu , H. B. Zhang , R. H. Sun , Y. F. Liu , Z. S. Liu , A. G. Zhou , Z. Z. Yu . Hydrophobic, flexible, and lightweight MXene Foams for high-performance electromagnetic-interference shielding. Adv. Mater., 2017, 29(38): 1702367
CrossRef ADS Google scholar
[35]
Z. L. Ma , S. L. Kang , J. Z. Ma , L. Shao , Y. L. Zhang , C. Liu , A. J. Wei , X. L. Xiang , L. F. Wei , J. W. Gu . Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano, 2020, 14(7): 8368
CrossRef ADS Google scholar
[36]
F. Shahzad , M. Alhabeb , C. B. Hatter , B. Anasori , S. Man Hong , C. M. Koo , Y. Gogotsi . Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137
CrossRef ADS Google scholar
[37]
O. Mashtalir , M. Naguib , V. N. Mochalin , Y. Dall’Agnese , M. Heon , M. W. Barsoum , Y. Gogotsi . Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun., 2013, 4(1): 1716
CrossRef ADS Google scholar
[38]
B. Akuzum , K. Maleski , B. Anasori , P. Lelyukh , N. J. Alvarez , E. C. Kumbur , Y. Gogotsi . Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano, 2018, 12(3): 2685
CrossRef ADS Google scholar
[39]
Y. J. Wan , X. M. Li , P. L. Zhu , R. Sun , C. P. Wong , W. H. Liao . Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf., 2020, 130: 105764
CrossRef ADS Google scholar
[40]
H. Z. Huang , X. F. Sha , Y. Cui , S. Y. Sun , H. Y. Huang , Z. Y. He , M. Y. Liu , N. G. Zhou , X. Y. Zhang , Y. Wei . Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J. Colloid Interface Sci., 2020, 567: 190
CrossRef ADS Google scholar
[41]
L.Y. YangJ.CuiL.ZhangX.R. XuX.ChenD.P. Sun, A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film, Adv. Funct. Mater. 31(27), 2101378 (2021)
[42]
W. T. Cao , C. Ma , S. Tan , M. G. Ma , P. B. Wan , F. Chen . Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett., 2019, 11(1): 72
CrossRef ADS Google scholar
[43]
J. H. Chen , J. K. Xu , K. Wang , X. R. Qian , R. C. Sun . Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(28): 15641
CrossRef ADS Google scholar
[44]
L. Q. Zhang , S. G. Yang , L. Li , B. Yang , H. D. Huang , D. X. Yan , G. J. Zhong , L. Xu , Z. M. Li . Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2019, 11(2): 2559
CrossRef ADS Google scholar
[45]
W. T. Cao , F. F. Chen , Y. J. Zhu , Y. G. Zhang , Y. Y. Jiang , M. G. Ma , F. Chen . Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 2018, 12(5): 4583
CrossRef ADS Google scholar
[46]
J. L. Hart , K. Hantanasirisakul , A. C. Lang , B. Anasori , D. Pinto , Y. Pivak , J. T. van Omme , S. J. May , Y. Gogotsi , M. L. Taheri . Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun., 2019, 10(1): 522
CrossRef ADS Google scholar
[47]
G. S. Lee , T. Yun , H. Kim , I. H. Kim , J. Choi , S. H. Lee , H. J. Lee , H. S. Hwang , J. G. Kim , D. W. Kim , H. M. Lee , C. M. Koo , S. O. Kim . Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722
CrossRef ADS Google scholar
[48]
M. Alhabeb , K. Maleski , B. Anasori , P. Lelyukh , L. Clark , S. Sin , Y. Gogotsi . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18): 7633
CrossRef ADS Google scholar
[49]
B. Zhou , Z. Zhang , Y. L. Li , G. J. Han , Y. Z. Feng , B. Wang , D. B. Zhang , J. M. Ma , C. T. Liu . Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces, 2020, 12(4): 4895
CrossRef ADS Google scholar
[50]
W. Z. Bao , X. Tang , X. Guo , S. Choi , C. Y. Wang , Y. Gogotsi , G. X. Wang . Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2018, 2(4): 778
CrossRef ADS Google scholar
[51]
J. W. Fu , Z. H. Chen , M. H. Wang , S. J. Liu , J. H. Zhang , J. N. Zhang , R. P. Han , Q. Xu . Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J., 2015, 259: 53
CrossRef ADS Google scholar
[52]
Y. Zhang , W. H. Cheng , W. X. Tian , J. Y. Lu , L. Song , K. M. Liew , B. B. Wang , Y. Hu . Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces, 2020, 12(5): 6371
CrossRef ADS Google scholar
[53]
Z. H. Zhou , Q. C. Song , B. X. Huang , S. Y. Feng , C. H. Lu . Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano, 2021, 15(7): 12405
CrossRef ADS Google scholar
[54]
X. F. Zhao , D. E. Holta , Z. Y. Tan , J. H. Oh , I. J. Echols , M. Anas , H. X. Cao , J. L. Lutkenhaus , M. Radovic , M. J. Green . Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl. Nano Mater., 2020, 3(11): 10578
CrossRef ADS Google scholar
[55]
Y. J. Wan , P. L. Zhu , S. H. Yu , R. Sun , C. P. Wong , W. H. Liao . Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small, 2018, 14(27): 1800534
CrossRef ADS Google scholar
[56]
S. H. Ryu , Y. K. Han , S. J. Kwon , T. Kim , B. M. Jung , S. B. Lee , B. Park . Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem. Eng. J., 2022, 428: 131167
CrossRef ADS Google scholar
[57]
L. Feng , Y. Zuo , X. He , X. J. Hou , Q. G. Fu , H. J. Li , Q. Song . Development of light cellular carbon nanotube@graphene/carbon nanocomposites with effective mechanical and EMI shielding performance. Carbon, 2020, 168: 719
CrossRef ADS Google scholar
[58]
R. T. Liu , M. Miao , Y. H. Li , J. F. Zhang , S. M. Cao , X. Feng . Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces, 2018, 10(51): 44787
CrossRef ADS Google scholar
[59]
R. S. Li , L. Ding , Q. Gao , H. M. Zhang , D. Zeng , B. A. Zhao , B. B. Fan , R. Zhang . Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J., 2021, 415: 128930
CrossRef ADS Google scholar
[60]
Z. S. Liu , Y. Zhang , H. B. Zhang , Y. Dai , J. Liu , X. F. Li , Z. Z. Yu . Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C, 2020, 8(5): 1673
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1234-6 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1234-6 and are accessible for authorized users.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFB3807200), the National Natural Science Foundation of China (Nos. 52201022 and 21973012), the Natural Science Foundation of Fujian Province (Nos. 2020J01474, 2021J06011, and 2020J01351), and the “Qishan Scholar” Scientific Research Startup Project of Fuzhou University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5495 KB)

Accesses

Citations

Detail

Sections
Recommended

/