Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges
Bo Wen, Da-Ning Luo, Ling-Long Zhang, Xiao-Lin Li, Xin Wang, Liang-Liang Huang, Xi Zhang, Dong-Feng Diao
Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges
Interface engineering in atomically thin transition metal dichalcogenides (TMDs) is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications and quantum devices. Interface engineering in a monolayer WSe2 sample via introduction of high-density edges of standing structured graphene nanosheets (GNs) is realized. A strong photoluminescence (PL) emission peak from intravalley and intervalley trions at about 750 nm is observed at the room temperature, which indicated the heavily p-type doping of the monolayer WSe2/thin graphene nanosheet-embedded carbon (TGNEC) film heterostructure. We also successfully triggered the emission of biexcitons (excited state biexciton) in a monolayer WSe2, via the electron trapping centers of edge quantum wells of a TGNEC film. The PL emission of a monolayer WSe2/GNEC film is quenched by capturing the photoexcited electrons to reduce the electron-hole recombination rate. This study can be an important benchmark for the extensive understanding of light–matter interaction in TMDs, and their dynamics.
excited state biexcitons / monolayer WSe2 / vertically graphene / electron trapping edges
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef
ADS
Google scholar
|
[2] |
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett., 2008, 100(1): 016602
CrossRef
ADS
Google scholar
|
[3] |
J. W. You, S. R. Bongu, Q. Bao, N. C. Panoiu. Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects. Nanophoton., 2018, 8: 63
CrossRef
ADS
Google scholar
|
[4] |
D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J. S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y. W. Zhang, Y. Zhou, Y. Zhu. A review on mechanics and mechanical properties of 2D materials — Graphene and beyond. Extreme Mech. Lett., 2017, 13: 42
CrossRef
ADS
Google scholar
|
[5] |
X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotech., 2014, 9(12): 1024
CrossRef
ADS
Google scholar
|
[6] |
H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech., 2012, 7(8): 490
CrossRef
ADS
Google scholar
|
[7] |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nature Nanotechno., 2011, 6(3): 147
CrossRef
ADS
Google scholar
|
[8] |
S. Bertolazzi, J. Brivio, A. Kis. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5(12): 9703
CrossRef
ADS
Google scholar
|
[9] |
K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon., 2016, 10(4): 216
CrossRef
ADS
Google scholar
|
[10] |
R. Yang, J. Fan, M. Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
CrossRef
ADS
Google scholar
|
[11] |
M. Cheng, J. Yang, X. Li, H. Li, R. Du, J. Shi, J. He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef
ADS
Google scholar
|
[12] |
Y. Han, J. Yuan, Y. Zhu, Q. Wang, L. Li, M. Cao. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. J. Colloid Interface Sci., 2022, 609: 746
CrossRef
ADS
Google scholar
|
[13] |
A. Xie, M. X. Sun, K. Zhang, W. C. Jiang, F. Wu, M. He. In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces: Interfacial enhancement of absorbing performance against electromagnetic pollution. Phys. Chem. Chem. Phys., 2016, 18(36): 24931
CrossRef
ADS
Google scholar
|
[14] |
J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing, Y. Chen, L. Liu. MoS2 /MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. (Weinh), 2022, 9(7): e2101988
CrossRef
ADS
Google scholar
|
[15] |
Q. Q. Wang, B. Niu, Y. H. Han, Q. Zheng, L. Li, M. S. Cao. Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J, 2023, 452: 139042
CrossRef
ADS
Google scholar
|
[16] |
M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J. W. Ager, R. Maboudian, A. Javey. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano, 2016, 10(7): 6853
CrossRef
ADS
Google scholar
|
[17] |
C. B. Qin, X. L. Liang, S. P. Han, G. F. Zhang, R. Y. Chen, J. Y. Hu, L. T. Xiao, S. T. Jia. Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation. Front. Phys., 2020, 16(1): 12501
CrossRef
ADS
Google scholar
|
[18] |
Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, H. Li. Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys., 2019, 14(1): 13607
CrossRef
ADS
Google scholar
|
[19] |
B. Wen, Y. Zhu, D. Yudistira, A. Boes, L. L. Zhang, T. Yidirim, B. Q. Liu, H. Yan, X. Q. Sun, Y. Zhou, Y. Z. Xue, Y. P. Zhang, L. Fu, A. Mitchell, H. Zhang, Y. Lu. Ferroelectric-driven exciton and trion modulation in monolayer molybdenum and tungsten diselenides. ACS Nano, 2019, 13(5): 5335
CrossRef
ADS
Google scholar
|
[20] |
S. Imani Yengejeh, W. Wen, Y. Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys., 2020, 16(1): 13502
CrossRef
ADS
Google scholar
|
[21] |
Y. Yang, Z. W. Jie, Z. W. Ying, L. Xian, J. Z. Ming, L. W. Min, and M. G. Hong, Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer, Acta Phys. Sin. 68(1), 017201 (2019) (in Chinese)
|
[22] |
V. Shahnazaryan, I. Iorsh, I. A. Shelykh, O. Kyriienko. Exciton−exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B, 2017, 96(11): 115409
CrossRef
ADS
Google scholar
|
[23] |
K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, J. Shan. Tightly bound trions in monolayer MoS2. Nat. Mater., 2013, 12(3): 207
CrossRef
ADS
Google scholar
|
[24] |
Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. Zhang, D. Smirnov, S.-F. Shi. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun., 2018, 9(1): 3719
CrossRef
ADS
Google scholar
|
[25] |
E. J. Sie, A. J. Frenzel, Y.-H. Lee, J. Kong, N. Gedik. Intervalley biexcitons and many-body effects in monolayer MoS2. Phys. Rev. B, 2015, 92(12): 125417
CrossRef
ADS
Google scholar
|
[26] |
K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, G. Moody. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun., 2017, 8(1): 15552
CrossRef
ADS
Google scholar
|
[27] |
J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun., 2013, 4: 1474
CrossRef
ADS
Google scholar
|
[28] |
A. Ramasubramaniam. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B, 2012, 86(11): 115409
CrossRef
ADS
Google scholar
|
[29] |
R. C. Miller, D. A. Kleinman, W. T. Tsang, A. C. Gossard. Observation of the excited level of excitons in GaAs quantum wells. Phys. Rev. B, 1981, 24(2): 1134
CrossRef
ADS
Google scholar
|
[30] |
R. L. Greene, K. K. Bajaj, D. E. Phelps. Energy levels of Wannier excitons in GaAs−Ga1−xAlxAs quantum-well structures. Phys. Rev. B, 1984, 29(4): 1807
CrossRef
ADS
Google scholar
|
[31] |
K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, J. Shan. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett., 2014, 113(2): 026803
CrossRef
ADS
Google scholar
|
[32] |
H. Q. Ying and X. Yang, Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application, Acta Phys. Sin. 71(12), 127102 (2022) (in Chinese)
|
[33] |
C. Wang, X. Zhang, D. Diao. Nanosized graphene crystallite induced strong magnetism in pure carbon films. Nanoscale, 2015, 7(10): 4475
CrossRef
ADS
Google scholar
|
[34] |
W. C. Chen, X. Zhang, D. F. Diao. Low-energy electron excitation effect on formation of graphene nanocrystallites during carbon film growth process. Appl. Phys. Lett., 2017, 111: 114105
CrossRef
ADS
Google scholar
|
[35] |
X. Zhang, Z. Lin, D. Peng, D. Diao. Bias-modulated high photoelectric response of graphene-nanocrystallite embedded carbon film coated on n-silicon. Nanomaterials, 2019, 9(3):
CrossRef
ADS
Google scholar
|
[36] |
S. Devaraj, N. Munichandraiah. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C, 2008, 112(11): 4406
CrossRef
ADS
Google scholar
|
[37] |
S. J. Yoo, C. Y. Kim, J. W. Shin, S. G. Lee, J. M. Jeong, Y. J. Kim, S. H. Lee, J. G. Kim. Characterization of an amorphous carbon film covering a Mo grid during in situ heating TEM study. Mater. Charact., 2013, 78: 31
CrossRef
ADS
Google scholar
|
[38] |
S. Y. Gao, L. Liu, Z. Z. Lin, X. Zhang, D. F. Diao. High photoresponsivity of vertical graphene nanosheets/P-Si enhanced by electron trapping at edge quantum wells. J. Phys. Chem. C, 2021, 125(9): 5392
CrossRef
ADS
Google scholar
|
[39] |
M. D. Tran, J. H. Kim, Y. H. Lee. Tailoring photoluminescence of monolayer transition metal dichalcogenides. Curr. Appl. Phys., 2016, 16(9): 1159
CrossRef
ADS
Google scholar
|
[40] |
J. Yang, T. Y. Lü, Y. W. Myint, J. J. Pei, D. Macdonald, J. C. Zheng, Y. R. Lu. Robust excitons and trions in monolayer MoTe2. ACS Nano, 2015, 9(6): 6603
CrossRef
ADS
Google scholar
|
[41] |
B. Zhu, X. Chen, X. Cui. Exciton binding energy of monolayer WS2. Sci. Rep., 2015, 5: 9218
CrossRef
ADS
Google scholar
|
[42] |
Z. Z. Yan, Z. H. Jiang, J. P. Lu, Z. H. Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13(4): 138115
CrossRef
ADS
Google scholar
|
[43] |
J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, Y. Lu. Excited state biexcitons in atomically thin MoSe2. ACS Nano, 2017, 11(7): 7468
CrossRef
ADS
Google scholar
|
[44] |
Y. M. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, T. F. Heinz. Observation of biexcitons in monolayer WSe2. Nat. Phys., 2015, 11(6): 477
CrossRef
ADS
Google scholar
|
[45] |
J. Z. Shang, X. N. Shen, C. X. Cong, N. Peimyoo, B. C. Cao, M. Eginligil, T. Yu. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano, 2015, 9(1): 647
CrossRef
ADS
Google scholar
|
[46] |
M. Tebyetekerwa, J. Zhang, Z. Xu, T. N. Truong, Z. Yin, Y. Lu, S. Ramakrishna, D. Macdonald, H. T. Nguyen. Mechanisms and applications of steady-state photoluminescence spectroscopy in two-dimensional transition-metal dichalcogenides. ACS Nano, 2020, 14(11): 14579
CrossRef
ADS
Google scholar
|
[47] |
A. T. Hanbicki, G. Kioseoglou, M. Currie, C. S. Hellberg, K. M. McCreary, A. L. Friedman, B. T. Jonker. Anomalous temperature-dependent spin-valley polarization in monolayer WS2. Sci. Rep., 2016, 6: 18885
CrossRef
ADS
Google scholar
|
[48] |
J. M. Li, X. Yuan, P. T. Jing, J. Li, M. B. Wei, J. Hua, J. L. Zhao, L. H. Tian. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv., 2016, 6(82): 78311
CrossRef
ADS
Google scholar
|
[49] |
T. Kato, T. Kaneko. Optical detection of a highly localized impurity state in monolayer tungsten disulfide. ACS Nano, 2014, 8(12): 12777
CrossRef
ADS
Google scholar
|
[50] |
Z. W. Wang, R. Z. Li, X. Y. Dong, Y. Xiao, Z. Q. Li. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides. Front. Phys., 2018, 13(4): 137305
CrossRef
ADS
Google scholar
|
[51] |
A. Sharma, B. Wen, B. Q. Liu, Y. W. Myint, H. Zhang, Y. Lu. Defect engineering in few-layer phosphorene. Small, 2018, 14(16): 1704556
CrossRef
ADS
Google scholar
|
[52] |
A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. D. Xu. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotech., 2013, 8(9): 634
CrossRef
ADS
Google scholar
|
[53] |
G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, B. Urbaszek. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B, 2014, 90(7): 075413
CrossRef
ADS
Google scholar
|
[54] |
D. K. Zhang, D. W. Kidd, K. Varga. Excited biexcitons in transition metal dichalcogenides. Nano Lett., 2015, 15(10): 7002
CrossRef
ADS
Google scholar
|
[55] |
Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, T. F. Heinz. Observation of biexcitons in monolayer WSe2. Nat. Phys., 2015, 11(6): 477
CrossRef
ADS
Google scholar
|
[56] |
G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, B. Urbaszek. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett., 2015, 114(9): 097403
CrossRef
ADS
Google scholar
|
[57] |
C.F. Klingshirn, Semiconductor Optics, Ed. 3, Springer-Verlag Berlin, Heidelberg, 2007 doi:
|
/
〈 | 〉 |