Deterministic and replaceable transfer of silver flakes for microcavities

Tingting Wang, Zhihao Zang, Yuchen Gao, Kenji Watanabe, Takashi Taniguchi, Wei Bao, Yu Ye

PDF(2925 KB)
PDF(2925 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (3) : 33302. DOI: 10.1007/s11467-022-1229-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Deterministic and replaceable transfer of silver flakes for microcavities

Author information +
History +

Abstract

How to fabricate high-quality microcavities simply and at low cost without causing damage to environmentally sensitive active layers such as perovskites are crucial for the studies of exciton−polaritons, however, it remains challenging in the field of microcavity fabrication. Usually, once the top mirror is deposited, the detuning of the microcavity is fixed and there is no easy way to tune it. Here, we have developed a method for deterministically transferring silver mirrors, which is relatively simple and guarantees the active layer from damaging of high temperature, particle bombardment, etc., during the deposition of the top mirror. Furthermore, with the help of a glass probe, we demonstrate a replaceable silver transfer method to tune the detuning of the microcavity, thereby changing the coupling of photons and excitons therein. The developed deterministic and replaceable silver mirror transfer methods will provide the capability to fabricate high-quality and tunable microcavities and play an active role in the development of the exciton−polariton field.

Graphical abstract

Keywords

silver / microcavity / transfer / perovskite

Cite this article

Download citation ▾
Tingting Wang, Zhihao Zang, Yuchen Gao, Kenji Watanabe, Takashi Taniguchi, Wei Bao, Yu Ye. Deterministic and replaceable transfer of silver flakes for microcavities. Front. Phys., 2023, 18(3): 33302 https://doi.org/10.1007/s11467-022-1229-3

References

[1]
C. Weisbuch , M. Nishioka , A. Ishikawa , Y. Arakawa . Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 1992, 69(23): 3314
CrossRef ADS Google scholar
[2]
J. Kasprzak , M. Richard , S. Kundermann , A. Baas , P. Jeambrun , J. M. J. Keeling , F. M. Marchetti , M. H. Szymańska , R. André , J. L. Staehli , V. Savona , P. B. Littlewood , B. Deveaud , L. S. Dang . Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443(7110): 409
CrossRef ADS Google scholar
[3]
S. Christopoulos , G. B. H. von Högersthal , A. J. D. Grundy , P. G. Lagoudakis , A. V. Kavokin , J. J. Baumberg , G. Christmann , R. Butté , E. Feltin , J. F. Carlin , N. Grandjean . Roomtemperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett., 2007, 98(12): 126405
CrossRef ADS Google scholar
[4]
F. Li , L. Orosz , O. Kamoun , S. Bouchoule , C. Brimont , P. Disseix , T. Guillet , X. Lafosse , M. Leroux , J. Leymarie , M. Mexis , M. Mihailovic , G. Patriarche , F. Réveret , D. Solnyshkov , J. Zuniga-Perez , G. Malpuech . From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett., 2013, 110(19): 196406
CrossRef ADS Google scholar
[5]
C. Schneider , A. Rahimi-Iman , N. Y. Kim , J. Fischer , I. G. Savenko , M. Amthor , M. Lermer , A. Wolf , L. Worschech , V. D. Kulakovskii , I. A. Shelykh , M. Kamp , S. Reitzenstein , A. Forchel , Y. Yamamoto , S. Höfling . An electrically pumped polariton laser. Nature, 2013, 497(7449): 348
CrossRef ADS Google scholar
[6]
L. Zhang , F. Wu , S. Hou , Z. Zhang , Y.-H. Chou , K. Watanabe , T. Taniguchi , S. R. Forrest , H. Deng . Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature, 2021, 591(7848): 61
CrossRef ADS Google scholar
[7]
N. Lundt , Ł. Dusanowski , E. Sedov , P. Stepanov , M. M. Glazov , S. Klembt , M. Klaas , J. Beierlein , Y. Qin , S. Tongay , M. Richard , A. V. Kavokin , S. Höfling , C. Schneider . Optical valley Hall effect for highly valley-coherent exciton−polaritons in an atomically thin semiconductor. Nat. Nanotechnol., 2019, 14(8): 770
CrossRef ADS Google scholar
[8]
J.GuB.ChakrabortyM.KhatoniarV.M. Menon, A room-temperature polariton light-emitting diode based on monolayer WS2, Nat. Nanotechnol. 14(11), 1024 (2019)
[9]
R. Su , A. Fieramosca , Q. Zhang , H. S. Nguyen , E. Deleporte , Z. Chen , D. Sanvitto , T. C. Liew , Q. Xiong . Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater., 2021, 20(10): 1315
CrossRef ADS Google scholar
[10]
T. J. S. Evans , A. Schlaus , Y. Fu , X. Zhong , T. L. Atallah , M. S. Spencer , L. E. Brus , S. Jin , X. Y. Zhu . Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater., 2018, 6(2): 1700982
CrossRef ADS Google scholar
[11]
S. Zhang , Q. Shang , W. Du , J. Shi , Z. Wu , Y. Mi , J. Chen , F. Liu , Y. Li , M. Liu , Q. Zhang , X. Liu . Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater., 2018, 6(2): 1701032
CrossRef ADS Google scholar
[12]
Q. Zhang , R. Su , X. Liu , J. Xing , T. C. Sum , Q. Xiong . High-quality whisperinggallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 2016, 26(34): 6238
CrossRef ADS Google scholar
[13]
L. Protesescu , S. Yakunin , M. I. Bodnarchuk , F. Krieg , R. Caputo , C. H. Hendon , R. X. Yang , A. Walsh , M. V. Kovalenko . Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6): 3692
CrossRef ADS Google scholar
[14]
J. C. Blancon , H. Tsai , W. Nie , C. C. Stoumpos , L. Pedesseau , C. Katan , M. Kepenekian , C. M. M. Soe , K. Appavoo , M. Y. Sfeir , S. Tretiak , P. M. Ajayan , M. G. Kanatzidis , J. Even , J. J. Crochet , A. D. Mohite . Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355(6331): 1288
CrossRef ADS Google scholar
[15]
A. Fieramosca , L. Polimeno , V. Ardizzone , L. De Marco , M. Pugliese , V. Maiorano , M. De Giorgi , L. Dominici , G. Gigli , D. Gerace , D. Ballarini , D. Sanvitto . Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv., 2019, 5(5): eaav9967
CrossRef ADS Google scholar
[16]
M. A. Green , A. Ho-Baillie , H. J. Snaith . The emergence of perovskite solar cells. Nat. Photonics, 2014, 8(7): 506
CrossRef ADS Google scholar
[17]
S. Yakunin , L. Protesescu , F. Krieg , M. I. Bodnarchuk , G. Nedelcu , M. Humer , G. De Luca , M. Fiebig , W. Heiss , M. V. Kovalenko . Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun., 2015, 6: 8056
CrossRef ADS Google scholar
[18]
Y. Gao , L. Zhao , Q. Shang , Y. Zhong , Z. Liu , J. Chen , Z. Zhang , J. Shi , W. Du , Y. Zhang , S. Chen , P. Gao , X. Liu , X. Wang , Q. Zhang . Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv. Mater., 2018, 30(31): 1801805
CrossRef ADS Google scholar
[19]
L. Polimeno , G. Lerario , M. De Giorgi , L. De Marco , L. Dominici , F. Todisco , A. Coriolano , V. Ardizzone , M. Pugliese , C. T. Prontera , V. Maiorano , A. Moliterni , C. Giannini , V. Olieric , G. Gigli , D. Ballarini , Q. Xiong , A. Fieramosca , D. D. Solnyshkov , G. Malpuech , D. Sanvitto . Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol., 2021, 16(12): 1349
CrossRef ADS Google scholar
[20]
R. Su , S. Ghosh , J. Wang , S. Liu , C. Diederichs , T. C. Liew , Q. Xiong . Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys., 2020, 16(3): 301
CrossRef ADS Google scholar
[21]
R. Su , S. Ghosh , T. C. Liew , Q. Xiong . Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv., 2021, 7(21): eabf8049
CrossRef ADS Google scholar
[22]
R. Su , J. Wang , J. Zhao , J. Xing , W. Zhao , C. Diederichs , T. C. Liew , Q. Xiong . Room temperature long-range coherent exciton−polariton condensate flow in lead halide perovskites. Sci. Adv., 2018, 4(10): eaau0244
CrossRef ADS Google scholar
[23]
R. J. Tao , K. Peng , L. Haeberlé , Q. W. Li , D. F. Jin , G. R. Fleming , S. Kéna-Cohen , X. Zhang , W. Bao . Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater., 2022, 21: 761
CrossRef ADS Google scholar
[24]
T. Wang , Z. Zang , Y. Gao , C. Lyu , P. Gu , Y. Yao , K. Peng , K. Watanabe , T. Taniguchi , X. Liu , Y. Gao , W. Bao , Y. Ye . Electrically pumped polarized exciton−polaritons in a halide perovskite microcavity. Nano Lett., 2022, 22(13): 5175
CrossRef ADS Google scholar
[25]
M. S. Spencer , Y. Fu , A. P. Schlaus , D. Hwang , Y. Dai , M. D. Smith , D. R. Gamelin , X. Y. Zhu . Spin-orbit-coupled exciton−polariton condensates in lead halide perovskites. Sci. Adv., 2021, 7(49): eabj7667
CrossRef ADS Google scholar
[26]
Y. Li , X. Ma , X. Zhai , M. Gao , H. Dai , S. Schumacher , T. Gao . Manipulating polariton condensates by Rashba−Dresselhaus coupling at room temperature. Nat. Commun., 2022, 13: 1
[27]
R. Su , C. Diederichs , J. Wang , T. C. H. Liew , J. Zhao , S. Liu , W. Xu , Z. Chen , Q. Xiong . Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 2017, 17(6): 3982
CrossRef ADS Google scholar
[28]
W. Bao , X. Liu , F. Xue , F. Zheng , R. Tao , S. Wang , Y. Xia , M. Zhao , J. Kim , S. Yang , Q. Li , Y. Wang , Y. Wang , L. W. Wang , A. H. MacDonald , X. Zhang . Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl. Acad. Sci. USA, 2019, 116(41): 20274
CrossRef ADS Google scholar
[29]
L. Polimeno , A. Fieramosca , G. Lerario , M. Cinquino , M. De Giorgi , D. Ballarini , F. Todisco , L. Dominici , V. Ardizzone , M. Pugliese , C. T. Prontera , V. Maiorano , G. Gigli , L. De Marco , D. Sanvitto . Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater., 2020, 8(16): 2000176
CrossRef ADS Google scholar
[30]
A. Brehier , R. Parashkov , J. S. Lauret , E. Deleporte . Strong exciton−photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett., 2006, 89(17): 171110
CrossRef ADS Google scholar
[31]
C. Rupprecht , N. Lundt , M. Wurdack , P. Stepanov , E. Estrecho , M. Richard , E. A. Ostrovskaya , S. H¨ofling , C. Schneider . Micro-mechanical assembly and characterization of high-quality Fabry–Pérot microcavities for the integration of two-dimensional materials. Appl. Phys. Lett., 2021, 118(10): 103103
CrossRef ADS Google scholar
[32]
C. Rupprecht , M. Klaas , H. Knopf , T. Taniguchi , K. Watanabe , Y. Qin , S. Tongay , S. Schröder , F. Eilenberger , S. Höfling , C. Schneider . Demonstration of a polariton step potential by local variation of light-matter coupling in a van-der-Waals heterostructure. Opt. Express, 2020, 28(13): 18649
CrossRef ADS Google scholar
[33]
M. A. Meitl , Z. T. Zhu , V. Kumar , K. J. Lee , X. Feng , Y. Y. Huang , I. Adesida , R. G. Nuzzo , J. A. Rogers . Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater., 2006, 5(1): 33
CrossRef ADS Google scholar
[34]
M.YiZ.Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3(22), 11700 (2015)
[35]
F. Liu . Mechanical exfoliation of large area 2D materials from vdW crystals. Prog. Surf. Sci., 2021, 96(2): 100626
CrossRef ADS Google scholar
[36]
A. Castellanos-Gomez , M. Buscema , R. Molenaar , V. Singh , L. Janssen , H. S. Van Der Zant , G. A. Steele . Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater., 2014, 1: 011002
CrossRef ADS Google scholar
[37]
M. Rodová , J. Brožek , K. Knížek , K. Nitsch . Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim., 2003, 71(2): 667
CrossRef ADS Google scholar
[38]
R. Jayaprakash , F. G. Kalaitzakis , G. Christmann , K. Tsagaraki , M. Hocevar , B. Gayral , E. Monroy , N. T. Pelekanos . Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap. Sci. Rep., 2017, 7: 5542
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1229-3 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1229-3 and are accessible for authorized users.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61875001) and the Beijing Natural Science Foundation (No. JQ21018). W. B. acknowledge support from National Science Foundation (Award No. DMR-2143041). T. T. acknowledges support from the JSPS KAKENHI (Grant Nos. 19H05790 and 20H00354) and A3 Foresight by JSPS.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(2925 KB)

Accesses

Citations

Detail

Sections
Recommended

/