Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa

Yu-Long Hai, He-Jin Yan, Yong-Qing Cai

PDF(3909 KB)
PDF(3909 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (2) : 23303. DOI: 10.1007/s11467-022-1227-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa

Author information +
History +

Abstract

In our study, we constructed a series of inorganic nonmetallic ternary hydrides PSH6 by first-principles structural screening under pressure of 200 GPa. The structural stability under lower pressure are examined. Focusing on the structural stability, electronic and phonon properties, as well as the possible superconducting properties within the framework of Bardeen−Cooper−Schrieffer (BCS) theory, we show that PSH6 with space group \textcolor[RGB]12,108,100Pm3¯m possesses a superconducting transition temperature of 146 K at 130 GPa. In the pressure range of 100−200 GPa, our work suggests that the ternary phosphorus-sulfur-hydrogen would act as a promising compositional and elemental space for achieving high-temperature superconductivity.

Graphical abstract

Keywords

phosphoruses / sulfur, hydrides / high-temperature / superconductivity / low-pressure / structural screening

Cite this article

Download citation ▾
Yu-Long Hai, He-Jin Yan, Yong-Qing Cai. Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa. Front. Phys., 2023, 18(2): 23303 https://doi.org/10.1007/s11467-022-1227-5

References

[1]
N. W. Ashcroft . Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 2004, 92(18): 187002
CrossRef ADS Google scholar
[2]
H. Wang , J. S. Tse , K. Tanaka , T. Iitaka , Y. Ma . Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA, 2012, 109(17): 6463
CrossRef ADS Google scholar
[3]
D. Duan , Y. Liu , F. Tian , D. Li , X. Huang , Z. Zhao , H. Yu , B. Liu , W. Tian , T. Cui . Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 2015, 4(1): 6968
CrossRef ADS Google scholar
[4]
A. P. Durajski , R. Szczesniak . Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine. J. Chem. Phys., 2018, 149(7): 074101
CrossRef ADS Google scholar
[5]
H. Liu , I. I. Naumov , R. Hoffmann , N. W. Ashcroft , R. J. Hemley . Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA, 2017, 114(27): 6990
CrossRef ADS Google scholar
[6]
Y. L. Hai , N. Lu , H. L. Tian , M. J. Jiang , W. Yang , W. J. Li , X. W. Yan , C. Zhang , X. J. Chen , G. H. Zhong . Cage structure and near room-temperature superconductivity in TbHn (n = 1–12). J. Phys. Chem. C, 2021, 125(6): 3640
CrossRef ADS Google scholar
[7]
D. V. Semenok , A. G. Kvashnin , I. A. Kruglov , A. R. Oganov . Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 2018, 9(8): 1920
CrossRef ADS Google scholar
[8]
D. V. Semenok , I. A. Troyan , A. G. Ivanova , A. G. Kvashnin , I. A. Kruglov , M. Hanfland , A. V. Sadakov , O. A. Sobolevskiy , K. S. Pervakov , I. S. Lyubutin , K. V. Glazyrin , N. Giordano , D. N. Karimov , A. L. Vasiliev , R. Akashi , V. M. Pudalov , A. R. Oganov . Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today, 2021, 48: 18
CrossRef ADS Google scholar
[9]
Y.GeF.ZhangR.J. Hemley, Room-temperature superconductivity in boron-nitrogen doped lanthanum superhydride, arXiv: 2012.13398 (2020)
[10]
M. Gao , X. W. Yan , Z. Y. Lu , T. Xiang . Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa. Phys. Rev. B, 2021, 104(10): L100504
CrossRef ADS Google scholar
[11]
S. Di Cataldo , C. Heil , W. von der Linden , L. Boeri . LaBH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B, 2021, 104(2): L020511
CrossRef ADS Google scholar
[12]
X.W. LiangA.BergaraX.D. WeiL.Y. WangR.X. SunH.Y. LiuR.J. HemleyL.WangG.Y. GaoY.J. Tian, Prediction of high-Tc superconductivity in ternary lanthanum borohydrides, arXiv: 2107.02553 (2021)
[13]
X. Feng , J. Zhang , G. Gao , H. Liu , H. Wang . Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Advances, 2015, 5(73): 59292
CrossRef ADS Google scholar
[14]
P.SongZ.HouP.CastroK.NakanoK.HongoY.TakanoR.Maezono, High- Tc ternary metal hydrides, YKH12 and LaKH12, discovered by machine learning, arXiv: 2103.00193 (2021)
[15]
X. W. Liang , A. Bergara , L. Y. Wang , B. Wen , Z. S. Zhao , X. F. Zhou , J. L. He , G. Y. Gao , Y. J. Tian . Potential high-Tc superconductivity in CaYH12 under pressure. Phys. Rev. B, 2019, 99: 100505(R)
CrossRef ADS Google scholar
[16]
W. Sukmas , P. Tsuppayakorn-aek , U. Pinsook , T. Bovorn-ratanaraks . Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure. J. Alloys Compd., 2020, 849: 156434
CrossRef ADS Google scholar
[17]
C. Heil , L. Boeri . Influence of bonding on superconductivity in high-pressure hydrides. Phys. Rev. B, 2015, 92: 060508(R)
CrossRef ADS Google scholar
[18]
D. A. Papaconstantopoulos . Possible high-temperature superconductivity in hygrogenated fluorine. Nov. Supercond. Mater., 2017, 3(1): 29
CrossRef ADS Google scholar
[19]
A.P. DrozdovM.I. EremetsI.A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 (2015)
[20]
A. P. Durajski , R. Szczesniak . Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine. J. Chem. Phys., 2018, 149(7): 074101
CrossRef ADS Google scholar
[21]
B. Liu , W. Cui , J. Shi , L. Zhu , J. Chen , S. Lin , R. Su , J. Ma , K. Yang , M. Xu , J. Hao , A. P. Durajski , J. Qi , Y. Li , Y. Li . Effect of covalent bonding on the superconducting critical temperature of the H-S-Se system. Phys. Rev. B, 2018, 98(17): 174101
CrossRef ADS Google scholar
[22]
X.Y. WangT.G. BiK.P. HillekeA.LamichhaneR.J. HemleyE.Zurek, A little bit of carbon can do a lot for superconductivity in H3S, arXiv: 2109.09898 (2021)
[23]
Y. F. Ge , F. Zhang , R. P. Dias , R. J. Hemley , Y. G. Yao . Hole-doped room-temperature superconductivity in H3S1−xZ (Z = C, Si). Mater. Today Phys., 2020, 15: 100330
CrossRef ADS Google scholar
[24]
Y. Ge , F. Zhang , Y. Yao . First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B, 2016, 93(22): 224513
CrossRef ADS Google scholar
[25]
A. Nakanishi , T. Ishikawa , K. Shimizu . First-principles study on superconductivity of P- and Cl-doped H3S. J. Phys. Soc. Jpn., 2018, 87(12): 124711
CrossRef ADS Google scholar
[26]
Z. J. Shao , H. Song , H. Y. Yu , D. F. Duan . Ab initio investigation on the doped H3S by V, VI, and VII group elements under high pressure. J. Supercond. Nov. Magn., 2022, 35(4): 979
CrossRef ADS Google scholar
[27]
E. Snider , N. Dasenbrock-Gammon , R. McBride , M. Debessai , H. Vindana , K. Vencatasamy , K. V. Lawler , A. Salamat , R. P. Dias . Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 2020, 586: 373
CrossRef ADS Google scholar
[28]
Y. L. Hai , H. L. Tian , M. J. Jiang , H. B. Ding , Y. J. Feng , G. H. Zhong , C. L. Yang , X. J. Chen , H. Q. Lin . Prediction of high-Tc superconductivity in H6SX (X = Cl, Br) at pressures below one megabar. Phys. Rev. B, 2022, 105(18): L180508
CrossRef ADS Google scholar
[29]
J. Bardeen , L. Cooper , J. Schrieffer . Theory of superconductivity. Phys. Rev., 1957, 108(5): 1175
CrossRef ADS Google scholar
[30]
T. Muramatsu , W. K. Wanene , M. Somayazulu , E. Vinitsky , D. Chandra , T. A. Strobel , V. V. Struzhkin , R. J. Hemley . Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9. J. Phys. Chem. C, 2015, 119(32): 18007
CrossRef ADS Google scholar
[31]
F. B. Tian , D. Li , D. F. Duan , X. J. Sha , Y. X. Liu , T. Yang , B. B. Liu , T. Cui . Predicted structures and superconductivity of hypothetical Mg-CH4 compounds under high pressures. Mater. Res. Express, 2015, 2(4): 046001
CrossRef ADS Google scholar
[32]
D. Z. Meng , M. Sakata , K. Shimizu , Y. Iijima , H. Saitoh , T. Sato , S. Takagi , S. Orimo . Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure. Phys. Rev. B, 2019, 99(2): 024508
CrossRef ADS Google scholar
[33]
J. Zheng , W. G. Sun , X. L. Dou , A. J. Mao , C. Lu . pressure-driven structural phase transitions and superconductivity of ternary hydride MgVH6. J. Phys. Chem. C, 2021, 125(5): 3150
CrossRef ADS Google scholar
[34]
Y. K. Wei , L. Q. Jia , Y. Y. Fang , L. J. Wang , Z. X. Qian , J. N. Yuan , G. Selvaraj , G. F. Ji , D. Q. Wei . Formation and superconducting properties of predicted ternary hydride ScYH6 under pressures. Int. J. Quantum Chem., 2020, 121(4): e26459
CrossRef ADS Google scholar
[35]
Z. J. Shao , D. F. Duan , Y. B. Ma , H. Y. Yu , H. Song , H. Xie , D. Li , F. B. Tian , B. B. Liu , T. Cui . Ternary superconducting cophosphorus hydrides stabilized via lithium. npj Comput. Mater., 2019, 5: 104
CrossRef ADS Google scholar
[36]
X. Li , Y. Xie , Y. Sun , P. H. Huang , H. Y. Liu , C. F. Chen , Y. M. Ma . Chemically tuning stability and superconductivity of P–H compounds. J. Phys. Chem. Lett., 2020, 11(3): 935
CrossRef ADS Google scholar
[37]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[38]
W. Kohn , L. J. Sham . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
CrossRef ADS Google scholar
[39]
G. Kresse , D. Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[40]
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[41]
D. J. Chadi . Special points for Brillouin-zone integrations. Phys. Rev. B, 1977, 16(4): 1746
CrossRef ADS Google scholar
[42]
R. Car , M. Parrinello . Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 1985, 55(22): 2471
CrossRef ADS Google scholar
[43]
W. G. Hoover . Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 1985, 31(3): 1695
CrossRef ADS Google scholar
[44]
P. Giannozzi , S. Baroni , N. Bonini , M. Calandra , R. Car . . QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 21(39): 395502
CrossRef ADS Google scholar
[45]
P. Giannozzi , O. Andreussi , T. Brumme , O. Bunau , M. B. Nardelli . . Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys.: Condens. Matter, 2017, 29(46): 465901
CrossRef ADS Google scholar
[46]
D. Vanderbilt . Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41(11): 7892
CrossRef ADS Google scholar
[47]
R. C. Dynes . McMillan’s equation and the Tc of superconductors. Solid State Commun., 1972, 10(7): 615
CrossRef ADS Google scholar
[48]
P. B. Allen , R. C. Dynes . Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B, 1975, 12(3): 905
CrossRef ADS Google scholar
[49]
M. Methfessel , A. T. Paxton . High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 1989, 40(6): 3616
CrossRef ADS Google scholar
[50]
Y. Wang , J. Lv , L. Zhu , Y. Ma . CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 2012, 183(10): 2063
CrossRef ADS Google scholar
[51]
B. Gao , P. Gao , S. Lu , J. Lv , Y. Wang , Y. Ma . Interface structure prediction via CALYPSO method. Sci. Bull. (Beijing), 2019, 301: 64
CrossRef ADS Google scholar
[52]
P. Y. Gao , B. Gao , S. H. Lu , H. Y. Liu , J. Lv , Y. C. Wang , Y. M. Ma . Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys., 2022, 17(2): 23203
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1227-5 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1227-5 and are accessible for authorized users.

Ackonwledgements

This work was supported by the National Natural Science Foundation of China (Grant 22022309), and the Natural Science Foundation of Guangdong Province, China (2021A1515010024), the University of Macau (SRG2019-00179-IAPME, MYRG2020-00075-IAPME), the Science and Technology Development Fund from Macau SAR (FDCT-0163/2019/A3). This work was performed at the High Performance Computing Cluster (HPCC), which is supported by the Information and Communication Technology Office (ICTO) of the University of Macau.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3909 KB)

Accesses

Citations

Detail

Sections
Recommended

/