Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa
Yu-Long Hai, He-Jin Yan, Yong-Qing Cai
Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa
In our study, we constructed a series of inorganic nonmetallic ternary hydrides PSH6 by first-principles structural screening under pressure of 200 GPa. The structural stability under lower pressure are examined. Focusing on the structural stability, electronic and phonon properties, as well as the possible superconducting properties within the framework of Bardeen−Cooper−Schrieffer (BCS) theory, we show that PSH6 with space group possesses a superconducting transition temperature of 146 K at 130 GPa. In the pressure range of 100−200 GPa, our work suggests that the ternary phosphorus-sulfur-hydrogen would act as a promising compositional and elemental space for achieving high-temperature superconductivity.
phosphoruses / sulfur, hydrides / high-temperature / superconductivity / low-pressure / structural screening
[1] |
N. W. Ashcroft . Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 2004, 92(18): 187002
CrossRef
ADS
Google scholar
|
[2] |
H. Wang , J. S. Tse , K. Tanaka , T. Iitaka , Y. Ma . Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA, 2012, 109(17): 6463
CrossRef
ADS
Google scholar
|
[3] |
D. Duan , Y. Liu , F. Tian , D. Li , X. Huang , Z. Zhao , H. Yu , B. Liu , W. Tian , T. Cui . Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 2015, 4(1): 6968
CrossRef
ADS
Google scholar
|
[4] |
A. P. Durajski , R. Szczesniak . Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine. J. Chem. Phys., 2018, 149(7): 074101
CrossRef
ADS
Google scholar
|
[5] |
H. Liu , I. I. Naumov , R. Hoffmann , N. W. Ashcroft , R. J. Hemley . Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA, 2017, 114(27): 6990
CrossRef
ADS
Google scholar
|
[6] |
Y. L. Hai , N. Lu , H. L. Tian , M. J. Jiang , W. Yang , W. J. Li , X. W. Yan , C. Zhang , X. J. Chen , G. H. Zhong . Cage structure and near room-temperature superconductivity in TbHn (n = 1–12). J. Phys. Chem. C, 2021, 125(6): 3640
CrossRef
ADS
Google scholar
|
[7] |
D. V. Semenok , A. G. Kvashnin , I. A. Kruglov , A. R. Oganov . Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors. J. Phys. Chem. Lett., 2018, 9(8): 1920
CrossRef
ADS
Google scholar
|
[8] |
D. V. Semenok , I. A. Troyan , A. G. Ivanova , A. G. Kvashnin , I. A. Kruglov , M. Hanfland , A. V. Sadakov , O. A. Sobolevskiy , K. S. Pervakov , I. S. Lyubutin , K. V. Glazyrin , N. Giordano , D. N. Karimov , A. L. Vasiliev , R. Akashi , V. M. Pudalov , A. R. Oganov . Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Mater. Today, 2021, 48: 18
CrossRef
ADS
Google scholar
|
[9] |
Y.GeF.ZhangR.J. Hemley, Room-temperature superconductivity in boron-nitrogen doped lanthanum superhydride, arXiv: 2012.13398 (2020)
|
[10] |
M. Gao , X. W. Yan , Z. Y. Lu , T. Xiang . Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa. Phys. Rev. B, 2021, 104(10): L100504
CrossRef
ADS
Google scholar
|
[11] |
S. Di Cataldo , C. Heil , W. von der Linden , L. Boeri . LaBH8: Towards high-Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B, 2021, 104(2): L020511
CrossRef
ADS
Google scholar
|
[12] |
X.W. LiangA.BergaraX.D. WeiL.Y. WangR.X. SunH.Y. LiuR.J. HemleyL.WangG.Y. GaoY.J. Tian, Prediction of high-Tc superconductivity in ternary lanthanum borohydrides, arXiv: 2107.02553 (2021)
|
[13] |
X. Feng , J. Zhang , G. Gao , H. Liu , H. Wang . Compressed sodalite-like MgH6 as a potential high-temperature superconductor. RSC Advances, 2015, 5(73): 59292
CrossRef
ADS
Google scholar
|
[14] |
P.SongZ.HouP.CastroK.NakanoK.HongoY.TakanoR.Maezono, High- Tc ternary metal hydrides, YKH12 and LaKH12, discovered by machine learning, arXiv: 2103.00193 (2021)
|
[15] |
X. W. Liang , A. Bergara , L. Y. Wang , B. Wen , Z. S. Zhao , X. F. Zhou , J. L. He , G. Y. Gao , Y. J. Tian . Potential high-Tc superconductivity in CaYH12 under pressure. Phys. Rev. B, 2019, 99: 100505(R)
CrossRef
ADS
Google scholar
|
[16] |
W. Sukmas , P. Tsuppayakorn-aek , U. Pinsook , T. Bovorn-ratanaraks . Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure. J. Alloys Compd., 2020, 849: 156434
CrossRef
ADS
Google scholar
|
[17] |
C. Heil , L. Boeri . Influence of bonding on superconductivity in high-pressure hydrides. Phys. Rev. B, 2015, 92: 060508(R)
CrossRef
ADS
Google scholar
|
[18] |
D. A. Papaconstantopoulos . Possible high-temperature superconductivity in hygrogenated fluorine. Nov. Supercond. Mater., 2017, 3(1): 29
CrossRef
ADS
Google scholar
|
[19] |
A.P. DrozdovM.I. EremetsI.A. Troyan, Superconductivity above 100 K in PH3 at high pressures, arXiv: 1508.06224 (2015)
|
[20] |
A. P. Durajski , R. Szczesniak . Structural, electronic, vibrational, and superconducting properties of hydrogenated chlorine. J. Chem. Phys., 2018, 149(7): 074101
CrossRef
ADS
Google scholar
|
[21] |
B. Liu , W. Cui , J. Shi , L. Zhu , J. Chen , S. Lin , R. Su , J. Ma , K. Yang , M. Xu , J. Hao , A. P. Durajski , J. Qi , Y. Li , Y. Li . Effect of covalent bonding on the superconducting critical temperature of the H-S-Se system. Phys. Rev. B, 2018, 98(17): 174101
CrossRef
ADS
Google scholar
|
[22] |
X.Y. WangT.G. BiK.P. HillekeA.LamichhaneR.J. HemleyE.Zurek, A little bit of carbon can do a lot for superconductivity in H3S, arXiv: 2109.09898 (2021)
|
[23] |
Y. F. Ge , F. Zhang , R. P. Dias , R. J. Hemley , Y. G. Yao . Hole-doped room-temperature superconductivity in H3S1−xZ (Z = C, Si). Mater. Today Phys., 2020, 15: 100330
CrossRef
ADS
Google scholar
|
[24] |
Y. Ge , F. Zhang , Y. Yao . First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Phys. Rev. B, 2016, 93(22): 224513
CrossRef
ADS
Google scholar
|
[25] |
A. Nakanishi , T. Ishikawa , K. Shimizu . First-principles study on superconductivity of P- and Cl-doped H3S. J. Phys. Soc. Jpn., 2018, 87(12): 124711
CrossRef
ADS
Google scholar
|
[26] |
Z. J. Shao , H. Song , H. Y. Yu , D. F. Duan . Ab initio investigation on the doped H3S by V, VI, and VII group elements under high pressure. J. Supercond. Nov. Magn., 2022, 35(4): 979
CrossRef
ADS
Google scholar
|
[27] |
E. Snider , N. Dasenbrock-Gammon , R. McBride , M. Debessai , H. Vindana , K. Vencatasamy , K. V. Lawler , A. Salamat , R. P. Dias . Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 2020, 586: 373
CrossRef
ADS
Google scholar
|
[28] |
Y. L. Hai , H. L. Tian , M. J. Jiang , H. B. Ding , Y. J. Feng , G. H. Zhong , C. L. Yang , X. J. Chen , H. Q. Lin . Prediction of high-Tc superconductivity in H6SX (X = Cl, Br) at pressures below one megabar. Phys. Rev. B, 2022, 105(18): L180508
CrossRef
ADS
Google scholar
|
[29] |
J. Bardeen , L. Cooper , J. Schrieffer . Theory of superconductivity. Phys. Rev., 1957, 108(5): 1175
CrossRef
ADS
Google scholar
|
[30] |
T. Muramatsu , W. K. Wanene , M. Somayazulu , E. Vinitsky , D. Chandra , T. A. Strobel , V. V. Struzhkin , R. J. Hemley . Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9. J. Phys. Chem. C, 2015, 119(32): 18007
CrossRef
ADS
Google scholar
|
[31] |
F. B. Tian , D. Li , D. F. Duan , X. J. Sha , Y. X. Liu , T. Yang , B. B. Liu , T. Cui . Predicted structures and superconductivity of hypothetical Mg-CH4 compounds under high pressures. Mater. Res. Express, 2015, 2(4): 046001
CrossRef
ADS
Google scholar
|
[32] |
D. Z. Meng , M. Sakata , K. Shimizu , Y. Iijima , H. Saitoh , T. Sato , S. Takagi , S. Orimo . Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure. Phys. Rev. B, 2019, 99(2): 024508
CrossRef
ADS
Google scholar
|
[33] |
J. Zheng , W. G. Sun , X. L. Dou , A. J. Mao , C. Lu . pressure-driven structural phase transitions and superconductivity of ternary hydride MgVH6. J. Phys. Chem. C, 2021, 125(5): 3150
CrossRef
ADS
Google scholar
|
[34] |
Y. K. Wei , L. Q. Jia , Y. Y. Fang , L. J. Wang , Z. X. Qian , J. N. Yuan , G. Selvaraj , G. F. Ji , D. Q. Wei . Formation and superconducting properties of predicted ternary hydride ScYH6 under pressures. Int. J. Quantum Chem., 2020, 121(4): e26459
CrossRef
ADS
Google scholar
|
[35] |
Z. J. Shao , D. F. Duan , Y. B. Ma , H. Y. Yu , H. Song , H. Xie , D. Li , F. B. Tian , B. B. Liu , T. Cui . Ternary superconducting cophosphorus hydrides stabilized via lithium. npj Comput. Mater., 2019, 5: 104
CrossRef
ADS
Google scholar
|
[36] |
X. Li , Y. Xie , Y. Sun , P. H. Huang , H. Y. Liu , C. F. Chen , Y. M. Ma . Chemically tuning stability and superconductivity of P–H compounds. J. Phys. Chem. Lett., 2020, 11(3): 935
CrossRef
ADS
Google scholar
|
[37] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[38] |
W. Kohn , L. J. Sham . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
CrossRef
ADS
Google scholar
|
[39] |
G. Kresse , D. Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef
ADS
Google scholar
|
[40] |
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef
ADS
Google scholar
|
[41] |
D. J. Chadi . Special points for Brillouin-zone integrations. Phys. Rev. B, 1977, 16(4): 1746
CrossRef
ADS
Google scholar
|
[42] |
R. Car , M. Parrinello . Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 1985, 55(22): 2471
CrossRef
ADS
Google scholar
|
[43] |
W. G. Hoover . Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 1985, 31(3): 1695
CrossRef
ADS
Google scholar
|
[44] |
P. Giannozzi , S. Baroni , N. Bonini , M. Calandra , R. Car .
CrossRef
ADS
Google scholar
|
[45] |
P. Giannozzi , O. Andreussi , T. Brumme , O. Bunau , M. B. Nardelli .
CrossRef
ADS
Google scholar
|
[46] |
D. Vanderbilt . Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41(11): 7892
CrossRef
ADS
Google scholar
|
[47] |
R. C. Dynes . McMillan’s equation and the Tc of superconductors. Solid State Commun., 1972, 10(7): 615
CrossRef
ADS
Google scholar
|
[48] |
P. B. Allen , R. C. Dynes . Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B, 1975, 12(3): 905
CrossRef
ADS
Google scholar
|
[49] |
M. Methfessel , A. T. Paxton . High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 1989, 40(6): 3616
CrossRef
ADS
Google scholar
|
[50] |
Y. Wang , J. Lv , L. Zhu , Y. Ma . CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun., 2012, 183(10): 2063
CrossRef
ADS
Google scholar
|
[51] |
B. Gao , P. Gao , S. Lu , J. Lv , Y. Wang , Y. Ma . Interface structure prediction via CALYPSO method. Sci. Bull. (Beijing), 2019, 301: 64
CrossRef
ADS
Google scholar
|
[52] |
P. Y. Gao , B. Gao , S. H. Lu , H. Y. Liu , J. Lv , Y. C. Wang , Y. M. Ma . Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys., 2022, 17(2): 23203
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |