Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure
Guangqiang Mei, Pengfei Suo, Li Mao, Min Feng, Limin Cao
Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure
The quantum harmonic oscillator (QHO), one of the most important and ubiquitous model systems in quantum mechanics, features equally spaced energy levels or eigenstates. Here we present a new class of nearly ideal QHOs formed by hydrogenic substitutional dopants in an AlGaAs/GaAs heterostructure. On the basis of model calculations, we demonstrate that, when a δ-doping Si donor substitutes the Ga/Al lattice site close to AlGaAs/GaAs heterointerface, a hydrogenic Si QHO, characterized by a restoring Coulomb force producing square law harmonic potential, is formed. This gives rise to QHO states with energy spacing of ~8−9 meV. We experimentally confirm this proposal by utilizing gate tuning and measuring QHO states using an aluminum single-electron transistor (SET). A sharp and fast oscillation with period of ~7−8 mV appears in addition to the regular Coulomb blockade (CB) oscillation with much larger period, for positive gate biases above 0.5 V. The observation of fast oscillation and its behavior is quantitatively consistent with our theoretical result, manifesting the harmonic motion of electrons from the QHO. Our results might establish a general principle to design, construct and manipulate QHOs in semiconductor heterostructures, opening future possibilities for their quantum applications.
quantum harmonic oscillator / AlGaAs/GaAs semiconductor heterostructure / single-electron transistor / gate tuning
[1] |
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, New York, USA, 2000
|
[2] |
D. J. Wineland. Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys., 2013, 85(3): 1103
CrossRef
ADS
Google scholar
|
[3] |
D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, D. M. Meekhof. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol., 1998, 103(3): 259
CrossRef
ADS
Google scholar
|
[4] |
D. Leibfried, R. Blatt, C. Monroe, D. J. Wineland. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 2003, 75(1): 281
CrossRef
ADS
Google scholar
|
[5] |
D. Kielpinski, C. Monroe, D. J. Wineland. Architecture for a large-scale ion-trap quantum computer. Nature, 2002, 417(6890): 709
CrossRef
ADS
Google scholar
|
[6] |
C. D. Bruzewicz, J. Chiaverini, R. McConnell, J. M. Sage. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev., 2019, 6(2): 021314
CrossRef
ADS
Google scholar
|
[7] |
C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, D. M. Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 2016, 117(6): 060504
CrossRef
ADS
Google scholar
|
[8] |
J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D. J. Wineland. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett., 2016, 117(6): 060505
CrossRef
ADS
Google scholar
|
[9] |
R. Srinivas, S. C. Burd, R. T. Sutherland, A. C. Wilson, D. J. Wineland, D. Leibfried, C. Allcock, D. H. Slichter. Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett., 2019, 122(16): 163201
CrossRef
ADS
Google scholar
|
[10] |
K. R. Brown, C. Ospelkaus, Y. Colombe, A. C. Wilson, D. Leibfried, D. J. Wineland. Coupled quantized mechanical oscillators. Nature, 2011, 471(7337): 196
CrossRef
ADS
Google scholar
|
[11] |
K. C. McCormick, J. Keller, S. C. Burd, D. J. Wineland, A. C. Wilson, D. Leibfried. Quantum-enhanced sensing of a single-ion mechanical oscillator. Nature, 2019, 572(7767): 86
CrossRef
ADS
Google scholar
|
[12] |
D. Kienzler, H. Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F. Lindenfelser, M. Marinelli, V. Negnevitsky, J. P. Home. Quantum harmonic oscillator state synthesis by reservoir engineering. Science, 2015, 347(6217): 53
CrossRef
ADS
Google scholar
|
[13] |
C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, J. P. Home. Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 2019, 566(7745): 513
CrossRef
ADS
Google scholar
|
[14] |
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, A. N. Cleland. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010, 464(7289): 697
CrossRef
ADS
Google scholar
|
[15] |
J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, O. Painter. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478(7367): 89
CrossRef
ADS
Google scholar
|
[16] |
P. Arrangoiz-Arriola, E. A. Wollack, Z. Y. Wang, M. Pechal, W. T. Jiang, T. P. McKenna, J. D. Witmer, R. Van Laer, A. H. Safavi-Naeini. Resolving the energy levels of a nanomechanical oscillator. Nature, 2019, 571(7766): 537
CrossRef
ADS
Google scholar
|
[17] |
Y. W. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, R. J. Schoelkopf. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature, 2018, 563(7733): 666
CrossRef
ADS
Google scholar
|
[18] |
M. Porrati, S. Putterman. Prediction of short time qubit readout via measurement of the next quantum jump of a coupled damped driven harmonic oscillator. Phys. Rev. Lett., 2020, 125(26): 260403
CrossRef
ADS
Google scholar
|
[19] |
M. Mirrahimi, Z. Leghtas, V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, M. H. Devoret. Dynamically protected cat-qubits: A new paradigm for universal quantum computation. New J. Phys., 2014, 16(4): 045014
CrossRef
ADS
Google scholar
|
[20] |
R. W. Gurney, N. F. Mott. Conduction in polar crystals (III): On the colour centres in alkali-halide crystals. Trans. Faraday Soc., 1938, 34: 506
CrossRef
ADS
Google scholar
|
[21] |
S. R. Tibbs. Electron energy levels in NaCl. Trans. Faraday Soc., 1939, 35: 1471
CrossRef
ADS
Google scholar
|
[22] |
P.Y. YuM. Cardona, Fundamentals of Semiconductors: Physics and Material Properties, Springer-Verlag, Berlin, Germany, 2001
|
[23] |
Y. Zhang. Electronic structures of impurities and point defects in semiconductors. Chin. Phys. B, 2018, 27(11): 117103
CrossRef
ADS
Google scholar
|
[24] |
Y. Zhang, J. W. Wang. Bound exciton model for an acceptor in a semiconductor. Phys. Rev. B, 2014, 90(15): 155201
CrossRef
ADS
Google scholar
|
[25] |
L. M. Cao, F. Altomare, H. L. Guo, M. Feng, A. M. Chang. Coulomb blockade correlations in a coupled single-electron device system. Solid State Commun., 2019, 296: 12
CrossRef
ADS
Google scholar
|
[26] |
R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, D. E. Prober. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science, 1998, 280(5367): 1238
CrossRef
ADS
Google scholar
|
[27] |
M. H. Devoret, R. J. Schoelkopf. Amplifying quantum signals with the single-electron transistor. Nature, 2000, 406(6799): 1039
CrossRef
ADS
Google scholar
|
[28] |
W. Lu, Z. Q. Ji, L. Pfeiffer, K. W. West, A. J. Rimberg. Real-time detection of electron tunnelling in a quantum dot. Nature, 2003, 423(6938): 422
CrossRef
ADS
Google scholar
|
[29] |
J. Bylander, T. Duty, P. Delsing. Current measurement by real-time counting of single electrons. Nature, 2005, 434(7031): 361
CrossRef
ADS
Google scholar
|
[30] |
W. Lu, A. J. Rimberg, K. D. Maranowski, A. C. Gossard. Single-electron transistor strongly coupled to an electrostatically defined quantum dot. Appl. Phys. Lett., 2000, 77(17): 2746
CrossRef
ADS
Google scholar
|
[31] |
D. Berman, N. B. Zhitenev, R. C. Ashoori, M. Shayegan. Observation of quantum fluctuations of charge on a quantum dot. Phys. Rev. Lett., 1999, 82(1): 161
CrossRef
ADS
Google scholar
|
[32] |
J. C. Chen, Z. H. An, T. Ueda, S. Komiyama, K. Hirakawa, V. Antonov. Metastable excited states of a closed quantum dot probed by an aluminum single-electron transistor. Phys. Rev. B, 2006, 74(4): 045321
CrossRef
ADS
Google scholar
|
[33] |
L. Sun, K. R. Brown, B. E. Kane. Coulomb blockade in a Si channel gated by an Al single-electron transistor. Appl. Phys. Lett., 2007, 91(14): 142117
CrossRef
ADS
Google scholar
|
[34] |
M. W. Dellow, P. H. Beton, C. J. G. M. Langerak, T. J. Foster, P. C. Main, L. Eaves, M. Henini, S. P. Beaumont, C. D. W. Wilkinson. Resonant tunneling through the bound states of a single donor atom in a quantum well. Phys. Rev. Lett., 1992, 68(11): 1754
CrossRef
ADS
Google scholar
|
[35] |
R. Tsu, X. L. Li, E. H. Nicollian. Slow conductance oscillations in nanoscale silicon clusters of quantum dots. Appl. Phys. Lett., 1994, 65(7): 842
CrossRef
ADS
Google scholar
|
[36] |
M. D. McCluskey, A. Janotti. Defects in semiconductors. J. Appl. Phys., 2020, 127(19): 190401
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |