Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure

Guangqiang Mei, Pengfei Suo, Li Mao, Min Feng, Limin Cao

PDF(4602 KB)
PDF(4602 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13310. DOI: 10.1007/s11467-022-1225-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure

Author information +
History +

Abstract

The quantum harmonic oscillator (QHO), one of the most important and ubiquitous model systems in quantum mechanics, features equally spaced energy levels or eigenstates. Here we present a new class of nearly ideal QHOs formed by hydrogenic substitutional dopants in an AlGaAs/GaAs heterostructure. On the basis of model calculations, we demonstrate that, when a δ-doping Si donor substitutes the Ga/Al lattice site close to AlGaAs/GaAs heterointerface, a hydrogenic Si QHO, characterized by a restoring Coulomb force producing square law harmonic potential, is formed. This gives rise to QHO states with energy spacing of ~8−9 meV. We experimentally confirm this proposal by utilizing gate tuning and measuring QHO states using an aluminum single-electron transistor (SET). A sharp and fast oscillation with period of ~7−8 mV appears in addition to the regular Coulomb blockade (CB) oscillation with much larger period, for positive gate biases above 0.5 V. The observation of fast oscillation and its behavior is quantitatively consistent with our theoretical result, manifesting the harmonic motion of electrons from the QHO. Our results might establish a general principle to design, construct and manipulate QHOs in semiconductor heterostructures, opening future possibilities for their quantum applications.

Graphical abstract

Keywords

quantum harmonic oscillator / AlGaAs/GaAs semiconductor heterostructure / single-electron transistor / gate tuning

Cite this article

Download citation ▾
Guangqiang Mei, Pengfei Suo, Li Mao, Min Feng, Limin Cao. Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure. Front. Phys., 2023, 18(1): 13310 https://doi.org/10.1007/s11467-022-1225-7

References

[1]
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, New York, USA, 2000
[2]
D. J. Wineland. Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys., 2013, 85(3): 1103
CrossRef ADS Google scholar
[3]
D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, D. M. Meekhof. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol., 1998, 103(3): 259
CrossRef ADS Google scholar
[4]
D. Leibfried, R. Blatt, C. Monroe, D. J. Wineland. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 2003, 75(1): 281
CrossRef ADS Google scholar
[5]
D. Kielpinski, C. Monroe, D. J. Wineland. Architecture for a large-scale ion-trap quantum computer. Nature, 2002, 417(6890): 709
CrossRef ADS Google scholar
[6]
C. D. Bruzewicz, J. Chiaverini, R. McConnell, J. M. Sage. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev., 2019, 6(2): 021314
CrossRef ADS Google scholar
[7]
C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, D. M. Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 2016, 117(6): 060504
CrossRef ADS Google scholar
[8]
J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D. J. Wineland. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett., 2016, 117(6): 060505
CrossRef ADS Google scholar
[9]
R. Srinivas, S. C. Burd, R. T. Sutherland, A. C. Wilson, D. J. Wineland, D. Leibfried, C. Allcock, D. H. Slichter. Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett., 2019, 122(16): 163201
CrossRef ADS Google scholar
[10]
K. R. Brown, C. Ospelkaus, Y. Colombe, A. C. Wilson, D. Leibfried, D. J. Wineland. Coupled quantized mechanical oscillators. Nature, 2011, 471(7337): 196
CrossRef ADS Google scholar
[11]
K. C. McCormick, J. Keller, S. C. Burd, D. J. Wineland, A. C. Wilson, D. Leibfried. Quantum-enhanced sensing of a single-ion mechanical oscillator. Nature, 2019, 572(7767): 86
CrossRef ADS Google scholar
[12]
D. Kienzler, H. Y. Lo, B. Keitch, L. de Clercq, F. Leupold, F. Lindenfelser, M. Marinelli, V. Negnevitsky, J. P. Home. Quantum harmonic oscillator state synthesis by reservoir engineering. Science, 2015, 347(6217): 53
CrossRef ADS Google scholar
[13]
C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, J. P. Home. Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 2019, 566(7745): 513
CrossRef ADS Google scholar
[14]
A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, A. N. Cleland. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010, 464(7289): 697
CrossRef ADS Google scholar
[15]
J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, O. Painter. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478(7367): 89
CrossRef ADS Google scholar
[16]
P. Arrangoiz-Arriola, E. A. Wollack, Z. Y. Wang, M. Pechal, W. T. Jiang, T. P. McKenna, J. D. Witmer, R. Van Laer, A. H. Safavi-Naeini. Resolving the energy levels of a nanomechanical oscillator. Nature, 2019, 571(7766): 537
CrossRef ADS Google scholar
[17]
Y. W. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, R. J. Schoelkopf. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature, 2018, 563(7733): 666
CrossRef ADS Google scholar
[18]
M. Porrati, S. Putterman. Prediction of short time qubit readout via measurement of the next quantum jump of a coupled damped driven harmonic oscillator. Phys. Rev. Lett., 2020, 125(26): 260403
CrossRef ADS Google scholar
[19]
M. Mirrahimi, Z. Leghtas, V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, M. H. Devoret. Dynamically protected cat-qubits: A new paradigm for universal quantum computation. New J. Phys., 2014, 16(4): 045014
CrossRef ADS Google scholar
[20]
R. W. Gurney, N. F. Mott. Conduction in polar crystals (III): On the colour centres in alkali-halide crystals. Trans. Faraday Soc., 1938, 34: 506
CrossRef ADS Google scholar
[21]
S. R. Tibbs. Electron energy levels in NaCl. Trans. Faraday Soc., 1939, 35: 1471
CrossRef ADS Google scholar
[22]
P.Y. YuM. Cardona, Fundamentals of Semiconductors: Physics and Material Properties, Springer-Verlag, Berlin, Germany, 2001
[23]
Y. Zhang. Electronic structures of impurities and point defects in semiconductors. Chin. Phys. B, 2018, 27(11): 117103
CrossRef ADS Google scholar
[24]
Y. Zhang, J. W. Wang. Bound exciton model for an acceptor in a semiconductor. Phys. Rev. B, 2014, 90(15): 155201
CrossRef ADS Google scholar
[25]
L. M. Cao, F. Altomare, H. L. Guo, M. Feng, A. M. Chang. Coulomb blockade correlations in a coupled single-electron device system. Solid State Commun., 2019, 296: 12
CrossRef ADS Google scholar
[26]
R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, D. E. Prober. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science, 1998, 280(5367): 1238
CrossRef ADS Google scholar
[27]
M. H. Devoret, R. J. Schoelkopf. Amplifying quantum signals with the single-electron transistor. Nature, 2000, 406(6799): 1039
CrossRef ADS Google scholar
[28]
W. Lu, Z. Q. Ji, L. Pfeiffer, K. W. West, A. J. Rimberg. Real-time detection of electron tunnelling in a quantum dot. Nature, 2003, 423(6938): 422
CrossRef ADS Google scholar
[29]
J. Bylander, T. Duty, P. Delsing. Current measurement by real-time counting of single electrons. Nature, 2005, 434(7031): 361
CrossRef ADS Google scholar
[30]
W. Lu, A. J. Rimberg, K. D. Maranowski, A. C. Gossard. Single-electron transistor strongly coupled to an electrostatically defined quantum dot. Appl. Phys. Lett., 2000, 77(17): 2746
CrossRef ADS Google scholar
[31]
D. Berman, N. B. Zhitenev, R. C. Ashoori, M. Shayegan. Observation of quantum fluctuations of charge on a quantum dot. Phys. Rev. Lett., 1999, 82(1): 161
CrossRef ADS Google scholar
[32]
J. C. Chen, Z. H. An, T. Ueda, S. Komiyama, K. Hirakawa, V. Antonov. Metastable excited states of a closed quantum dot probed by an aluminum single-electron transistor. Phys. Rev. B, 2006, 74(4): 045321
CrossRef ADS Google scholar
[33]
L. Sun, K. R. Brown, B. E. Kane. Coulomb blockade in a Si channel gated by an Al single-electron transistor. Appl. Phys. Lett., 2007, 91(14): 142117
CrossRef ADS Google scholar
[34]
M. W. Dellow, P. H. Beton, C. J. G. M. Langerak, T. J. Foster, P. C. Main, L. Eaves, M. Henini, S. P. Beaumont, C. D. W. Wilkinson. Resonant tunneling through the bound states of a single donor atom in a quantum well. Phys. Rev. Lett., 1992, 68(11): 1754
CrossRef ADS Google scholar
[35]
R. Tsu, X. L. Li, E. H. Nicollian. Slow conductance oscillations in nanoscale silicon clusters of quantum dots. Appl. Phys. Lett., 1994, 65(7): 842
CrossRef ADS Google scholar
[36]
M. D. McCluskey, A. Janotti. Defects in semiconductors. J. Appl. Phys., 2020, 127(19): 190401
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1225-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1225-7 and are accessible for authorized users.

Acknowledgements

We gratefully acknowledge Prof. A. M. Chang for his generous supports in experiments at Duke University, and Dr. F. Altomare for his sincere helps in experiments and careful reading of the manuscript. Fruitful discussions with Profs. Y. Zhang, J. Chen, J. Zhao, and C. Lin are greatly appreciated. M. Feng thanks financial support from the National Key R&D Program of China (Grant No. 2018YFA0305802), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XD30000000), and the National Natural Science Foundation of China (Grant Nos. 11574364 and 11774267). L. Mao thanks financial support from the National Key R&D Program of China by the Ministry of Science and Technology of China (Grant No. 2015C8932400).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4602 KB)

Accesses

Citations

Detail

Sections
Recommended

/