Moiré flat bands of twisted few-layer graphite
Zhen Ma, Shuai Li, Meng-Meng Xiao, Ya-Wen Zheng, Ming Lu, Haiwen Liu, Jin-Hua Gao, X. C. Xie
Moiré flat bands of twisted few-layer graphite
We report that the twisted few layer graphite (tFL-graphite) is a new family of moiré heterostructures (MHSs), which has richer and highly tunable moiré flat band structures entirely distinct from all the known MHSs. A tFL-graphite is composed of two few-layer graphite (Bernal stacked multilayer graphene), which are stacked on each other with a small twisted angle. The moiré band structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers. Near the magic angle, a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive (parabolic or linear) bands at the Fermi level, thus, enhances the DOS at EF . This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems. Therefore, we expect strong multiband correlation effects in tFL-graphite. Meanwhile, a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites, indicating that tFL-graphite is also a novel topological flat band system.
few-layer graphite / flat band / moiré heterostructures
[1] |
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, P. Jarillo-Herrero. Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
CrossRef
ADS
Google scholar
|
[2] |
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
CrossRef
ADS
Google scholar
|
[3] |
M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, C. R. Dean. Tuning superconductivity in twisted bilayer graphene. Science, 2019, 363(6431): 1059
CrossRef
ADS
Google scholar
|
[4] |
X. Lu, P. Stepanov, W. Yang, M. Xie, M. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. MacDonald, D. Efetov. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780): 653
CrossRef
ADS
Google scholar
|
[5] |
A. Sharpe, E. Fox, A. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kastner, D. Goldhaber-Gordon. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453): 605
CrossRef
ADS
Google scholar
|
[6] |
E. Codecido, Q. Wang, R. Koester, S. Che, H. Tian, R. Lv, S. Tran, K. Watanabe, T. Taniguchi, F. Zhang, M. Bockrath, C. Lau. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv., 2019, 5(9): eaaw9770
CrossRef
ADS
Google scholar
|
[7] |
Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao, E. Andrei. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 2019, 573(7772): 91
CrossRef
ADS
Google scholar
|
[8] |
Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, W. Yao. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
CrossRef
ADS
Google scholar
|
[9] |
J. M. B. Lopes dos Santos, N. M. R. Peres, A. H. Castro Neto. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett., 2007, 99(25): 256802
CrossRef
ADS
Google scholar
|
[10] |
R. Bistritzer, A. H. MacDonald. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233
CrossRef
ADS
Google scholar
|
[11] |
J. M. B. Lopes dos Santos, N. M. R. Peres, A. H. Castro Neto. Continuum model of the twisted graphene bilayer. Phys. Rev. B, 2012, 86(15): 155449
CrossRef
ADS
Google scholar
|
[12] |
P. Moon, M. Koshino. Optical absorption in twisted bilayer graphene. Phys. Rev. B, 2013, 87(20): 205404
CrossRef
ADS
Google scholar
|
[13] |
M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, L. Fu. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031087
CrossRef
ADS
Google scholar
|
[14] |
J. Kang, O. Vafek. Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X, 2018, 8(3): 031088
CrossRef
ADS
Google scholar
|
[15] |
L. A. Gonzalez-Arraga, J. L. Lado, F. Guinea, P. San-Jose. Electrically controllable magnetism in twisted bilayer graphene. Phys. Rev. Lett., 2017, 119(10): 107201
CrossRef
ADS
Google scholar
|
[16] |
C. Xu, L. Balents. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett., 2018, 121(8): 087001
CrossRef
ADS
Google scholar
|
[17] |
H. C. Po, L. Zou, A. Vishwanath, T. Senthil. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031089
CrossRef
ADS
Google scholar
|
[18] |
H. Isobe, N. F. Q. Yuan, L. Fu. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X, 2018, 8(4): 041041
CrossRef
ADS
Google scholar
|
[19] |
B. Padhi, C. Setty, P. Phillips. Doped twisted bilayer graphene near magic angles: Proximity to Wigner crystallization, not Mott insulation. Nano Lett., 2018, 18(10): 6175
CrossRef
ADS
Google scholar
|
[20] |
F. Guinea, N. Walet. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl. Acad. Sci. USA, 2018, 115(52): 13174
CrossRef
ADS
Google scholar
|
[21] |
C. C. Liu, L. D. Zhang, W. Q. Chen, F. Yang. Chiral spin density wave and d+id superconductivity in the magic-angle-twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(21): 217001
CrossRef
ADS
Google scholar
|
[22] |
H. Guo, X. Zhu, S. Feng, R. T. Scalettar. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys. Rev. B, 2018, 97(23): 235453
CrossRef
ADS
Google scholar
|
[23] |
Y. P. Lin, R. M. Nandkishore. Kohn−Luttinger superconductivity on two orbital honeycomb lattice. Phys. Rev. B, 2018, 98(21): 214521
CrossRef
ADS
Google scholar
|
[24] |
F. Wu, A. H. MacDonald, I. Martin. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(25): 257001
CrossRef
ADS
Google scholar
|
[25] |
B. Lian, Z. Wang, B. A. Bernevig. Twisted bilayer graphene: A phonon-driven superconductor. Phys. Rev. Lett., 2019, 122(25): 257002
CrossRef
ADS
Google scholar
|
[26] |
T. J. Peltonen, R. Ojajärvi, T. T. Heikkilä. Mean-field theory for superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(22): 220504
CrossRef
ADS
Google scholar
|
[27] |
D. M. Kennes, J. Lischner, C. Karrasch. Strong correlations and d+id superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(24): 241407
CrossRef
ADS
Google scholar
|
[28] |
Y. Z. You, A. Vishwanath. Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Mater., 2019, 4(1): 16
CrossRef
ADS
Google scholar
|
[29] |
X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. Haei Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815): 221
CrossRef
ADS
Google scholar
|
[30] |
C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng, D. Shi, O. V. Yazyev, G. Zhang. Correlated states in twisted double bilayer graphene. Nat. Phys., 2020, 16(5): 520
CrossRef
ADS
Google scholar
|
[31] |
Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583(7815): 215
CrossRef
ADS
Google scholar
|
[32] |
G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, E. Tutuc. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett., 2019, 123(19): 197702
CrossRef
ADS
Google scholar
|
[33] |
Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, T. Senthil. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B, 2019, 99(7): 075127
CrossRef
ADS
Google scholar
|
[34] |
M. Koshino. Band structure and topological properties of twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235406
CrossRef
ADS
Google scholar
|
[35] |
N. R. Chebrolu, B. L. Chittari, J. Jung. Flat bands in twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235417
CrossRef
ADS
Google scholar
|
[36] |
J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, A. Vishwanath. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer grapheme. Nat. Commun., 2019, 10: 5333
CrossRef
ADS
Google scholar
|
[37] |
F. Haddadi, Q. Wu, A. J. Kruchkov, O. V. Yazyev. Moiré flat bands in twisted double bilayer graphene. Nano Lett., 2020, 20(4): 2410
CrossRef
ADS
Google scholar
|
[38] |
F. Wu, S. Das Sarma. Ferromagnetism and superconductivity in twisted double bilayer graphene. Phys. Rev. B, 2020, 101(15): 155149
CrossRef
ADS
Google scholar
|
[39] |
F.J. CulchacR.B. CapazL.Chico E.Suarez Morell, Flat bands and gaps in twisted double bilayer grapheme, arXiv: 1911.01347 (2019)
|
[40] |
Z.MaS.Li Y.W. ZhengM. M. XiaoH.JiangJ.H. GaoX.C. Xie, Topological flat bands in twisted trilayer grapheme, arXiv: 1905.00622 (2019)
|
[41] |
W. J. Zuo, J. B. Qiao, D. L. Ma, L. J. Yin, G. Sun, J. Y. Zhang, L. Y. Guan, L. He. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene. Phys. Rev. B, 2018, 97(3): 035440
CrossRef
ADS
Google scholar
|
[42] |
E. Suárez Morell, M. Pacheco, L. Chico, L. Brey. Electronic properties of twisted trilayer graphene. Phys. Rev. B, 2013, 87(12): 125414
CrossRef
ADS
Google scholar
|
[43] |
X.LiF.Wu A.H. MacDonald, Electronic structure of single-twist trilayer graphene, arXiv: 1907.12338 (2019)
|
[44] |
S. Carr, C. Li, Z. Zhu, E. Kaxiras, S. Sachdev, A. Kruchkov. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett., 2020, 20(5): 3030
CrossRef
ADS
Google scholar
|
[45] |
S. Xu, M. M. Al Ezzi, N. Balakrishnan, A. Garcia-Ruiz, B. Tsim, C. Mullan, J. Barrier, N. Xin, B. A. Piot, T. Taniguchi, K. Watanabe, A. Carvalho, A. Mishchenko, A. K. Geim, V. I. Fal’ko, S. Adam, A. H. C. Neto, K. S. Novoselov, Y. Shi. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(5): 619
CrossRef
ADS
Google scholar
|
[46] |
S. Chen, M. He, Y. H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, M. Yankowitz. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(3): 374
CrossRef
ADS
Google scholar
|
[47] |
H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H. MacDonald, A. F. Young. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836): 66
CrossRef
ADS
Google scholar
|
[48] |
J. Liu, Z. Ma, J. Gao, X. Dai. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X, 2019, 9(3): 031021
CrossRef
ADS
Google scholar
|
[49] |
B. L. Chittari, G. Chen, Y. Zhang, F. Wang, J. Jung. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys. Rev. Lett., 2019, 122(1): 016401
CrossRef
ADS
Google scholar
|
[50] |
G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K. Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang, F. Wang. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
CrossRef
ADS
Google scholar
|
[51] |
G. Chen, A. Sharpe, P. Gallagher, I. Rosen, E. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, F. Wang. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
CrossRef
ADS
Google scholar
|
[52] |
F. Wu, T. Lovorn, E. Tutuc, A. H. MacDonald. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
CrossRef
ADS
Google scholar
|
[53] |
M. H. Naik, M. Jain. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett., 2018, 121(26): 266401
CrossRef
ADS
Google scholar
|
[54] |
Y. Pan, S. Fölsch, Y. Nie, D. Waters, Y. C. Lin, B. Jariwala, K. Zhang, K. Cho, J. Robinson, R. Feenstra. Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett., 2018, 18(3): 1849
CrossRef
ADS
Google scholar
|
[55] |
F. Wu, T. Lovorn, E. Tutuc, I. Martin, A. H. Mac-Donald. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett., 2019, 122(8): 086402
CrossRef
ADS
Google scholar
|
[56] |
F. Conte, D. Ninno, G. Cantele. Electronic properties and interlayer coupling of twisted MoS2/NbSe2 heterobilayers. Phys. Rev. B, 2019, 99(15): 155429
CrossRef
ADS
Google scholar
|
[57] |
S. Javvaji, J. H. Sun, J. Jung. Topological flat bands without magic angles in massive twisted bilayer graphenes. Phys. Rev. B, 2020, 101(12): 125411
CrossRef
ADS
Google scholar
|
[58] |
J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845): 249
CrossRef
ADS
Google scholar
|
[59] |
Z. Hao, A. M. Zimmerman, P. Ledwith, E. Khalaf, D. H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534): 1133
CrossRef
ADS
Google scholar
|
[60] |
M. Liang, M. M. Xiao, Z. Ma, J. H. Gao. Moiré band structures of the double twisted few-layer graphene. Phys. Rev. B, 2022, 105(19): 195422
CrossRef
ADS
Google scholar
|
[61] |
See the Supplemental Material for more details.
|
[62] |
F. Guinea, A. H. Castro Neto, N. M. R. Peres. Electronic states and Landau levels in graphene stacks. Phys. Rev. B, 2006, 73(24): 245426
CrossRef
ADS
Google scholar
|
[63] |
M. Koshino, T. Ando. Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation. Phys. Rev. B, 2007, 76(8): 085425
CrossRef
ADS
Google scholar
|
[64] |
H. Min, A. H. MacDonald. Chiral decomposition in the electronic structure of graphene multilayers. Phys. Rev. B, 2008, 77(15): 155416
CrossRef
ADS
Google scholar
|
[65] |
A. Simon. Superconductivity and chemistry. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1788
CrossRef
ADS
Google scholar
|
[66] |
A. Bussmann-Holder, H. Keller, A. Simon, A. Bianconi. Multi-band superconductivity and the steep band/flat band scenario. Condens. Matter, 2019, 4(4): 91
CrossRef
ADS
Google scholar
|
[67] |
J. B. Wu, X. Zhang, M. Ijäs, W. P. Han, X. F. Qiao, X. L. Li, D. S. Jiang, A. C. Ferrari, P. H. Tan. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun., 2014, 5(1): 5309
CrossRef
ADS
Google scholar
|
[68] |
F. Zhang, B. Sahu, H. Min, A. H. MacDonald. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B, 2010, 82(3): 035409
CrossRef
ADS
Google scholar
|
[69] |
E. Khalaf, A. J. Kruchkov, G. Tarnopolsky, A. Vishwanath. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B, 2019, 100(8): 085109
CrossRef
ADS
Google scholar
|
[70] |
H. Peng, N. B. M. Schröter, J. Yin, H. Wang, T. F. Chung, H. Yang, S. Ekahana, Z. Liu, J. Jiang, L. Yang, T. Zhang, C. Chen, H. Ni, A. Barinov, Y. P. Chen, Z. Liu, H. Peng, Y. Chen. Substrate doping effect and unusually large angle van Hove singularity evolution in twisted bi- and multilayer graphene. Adv. Mater., 2017, 29(27): 1606741
CrossRef
ADS
Google scholar
|
[71] |
M. I. B. Utama, R. J. Koch, K. Lee, N. Leconte, H. Li, S. Zhao, L. Jiang, J. Zhu, K. Watanabe, T. Taniguchi.
CrossRef
ADS
Google scholar
|
[72] |
J. J. P. Thompson, D. Pei, H. Peng, H. Wang, N. Channa, H. L. Peng, A. Barinov, N. B. M. Schröter, Y. Chen, M. Mucha-Kruczy’nski. Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy. Nat. Commun., 2020, 11(1): 3582
CrossRef
ADS
Google scholar
|
[73] |
S. Lisi, X. Lu, T. Benschop, T. A. de Jong, P. Stepanov, J. R. Duran, F. Margot, I. Cucchi, E. Cappelli, A. Hunter, A. Tamai, V. Kandyba, A. Giampietri, A. Barinov, J. Jobst, V. Stalman, M. Leeuwenhoek, K. Watanabe, T. Taniguchi, L. Rademaker, S. J. van der Molen, M. P. Allan, D. K. Efetov, F. Baumberger. Observation of flat bands in twisted bilayer grapheme. Nat. Phys., 2021, 17: 189
CrossRef
ADS
Google scholar
|
[74] |
A. Vela, M. V. O. Moutinho, F. J. Culchac, P. Venezuela, R. B. Capaz. Electronic structure and optical properties of twisted multilayer graphene. Phys. Rev. B, 2018, 98(15): 155135
CrossRef
ADS
Google scholar
|
[75] |
T. Cea, N. Walet, F. Guinea. Twists and the electronic structure of graphitic materials. Nano Lett., 2019, 19(12): 8683
CrossRef
ADS
Google scholar
|
[76] |
A. Grushina, D. K. Ki, M. Koshino, A. Nicolet, C. Faugeras, E. McCann, M. Potemski, A. Morpurgo. Insulating state in tetralayers reveals an even–odd interaction effect in multilayer graphene. Nat. Commun., 2015, 6(1): 6419
CrossRef
ADS
Google scholar
|
[77] |
Y. Nam, D. K. Ki, D. Soler-Delgado, A. Morpurgo. A family of finite-temperature electronic phase transitions in graphene multilayers. Science, 2018, 362(6412): 324
CrossRef
ADS
Google scholar
|
[78] |
J. Wang, Z. Liu. Hierarchy of ideal flatbands in chiral twisted multilayer graphene models. Phys. Rev. Lett., 2022, 128(17): 176403
CrossRef
ADS
Google scholar
|
[79] |
Z. A. H. Goodwin, L. Klebl, V. Vitale, X. Liang, V. Gogtay, X. van Gorp, D. M. Kennes, A. A. Mostofi, J. Lischner. Flat bands, electron interactions, and magnetic order in magic-angle mono-trilayer graphene. Phys. Rev. Mater., 2021, 5(8): 084008
CrossRef
ADS
Google scholar
|
[80] |
S.ZhangB. XieQ.WuJ.LiuO.V. Yazyev, Chiral decomposition of twisted graphene multilayers with arbitrary stacking, arXiv: 2012.11964 (2020)
|
[81] |
X. Lin, H. Zhu, J. Ni. Emergence of intrinsically isolated flat bands and their topology in fully relaxed twisted multilayer graphene. Phys. Rev. B, 2021, 104(12): 125421
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |