Moiré flat bands of twisted few-layer graphite

Zhen Ma, Shuai Li, Meng-Meng Xiao, Ya-Wen Zheng, Ming Lu, Haiwen Liu, Jin-Hua Gao, X. C. Xie

PDF(4735 KB)
PDF(4735 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13307. DOI: 10.1007/s11467-022-1220-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Moiré flat bands of twisted few-layer graphite

Author information +
History +

Abstract

We report that the twisted few layer graphite (tFL-graphite) is a new family of moiré heterostructures (MHSs), which has richer and highly tunable moiré flat band structures entirely distinct from all the known MHSs. A tFL-graphite is composed of two few-layer graphite (Bernal stacked multilayer graphene), which are stacked on each other with a small twisted angle. The moiré band structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers. Near the magic angle, a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive (parabolic or linear) bands at the Fermi level, thus, enhances the DOS at EF . This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems. Therefore, we expect strong multiband correlation effects in tFL-graphite. Meanwhile, a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites, indicating that tFL-graphite is also a novel topological flat band system.

Graphical abstract

Keywords

few-layer graphite / flat band / moiré heterostructures

Cite this article

Download citation ▾
Zhen Ma, Shuai Li, Meng-Meng Xiao, Ya-Wen Zheng, Ming Lu, Haiwen Liu, Jin-Hua Gao, X. C. Xie. Moiré flat bands of twisted few-layer graphite. Front. Phys., 2023, 18(1): 13307 https://doi.org/10.1007/s11467-022-1220-z

References

[1]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, P. Jarillo-Herrero. Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
CrossRef ADS Google scholar
[2]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
CrossRef ADS Google scholar
[3]
M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, C. R. Dean. Tuning superconductivity in twisted bilayer graphene. Science, 2019, 363(6431): 1059
CrossRef ADS Google scholar
[4]
X. Lu, P. Stepanov, W. Yang, M. Xie, M. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. MacDonald, D. Efetov. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780): 653
CrossRef ADS Google scholar
[5]
A. Sharpe, E. Fox, A. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. Kastner, D. Goldhaber-Gordon. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453): 605
CrossRef ADS Google scholar
[6]
E. Codecido, Q. Wang, R. Koester, S. Che, H. Tian, R. Lv, S. Tran, K. Watanabe, T. Taniguchi, F. Zhang, M. Bockrath, C. Lau. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv., 2019, 5(9): eaaw9770
CrossRef ADS Google scholar
[7]
Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao, E. Andrei. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 2019, 573(7772): 91
CrossRef ADS Google scholar
[8]
Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, W. Yao. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
CrossRef ADS Google scholar
[9]
J. M. B. Lopes dos Santos, N. M. R. Peres, A. H. Castro Neto. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett., 2007, 99(25): 256802
CrossRef ADS Google scholar
[10]
R. Bistritzer, A. H. MacDonald. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233
CrossRef ADS Google scholar
[11]
J. M. B. Lopes dos Santos, N. M. R. Peres, A. H. Castro Neto. Continuum model of the twisted graphene bilayer. Phys. Rev. B, 2012, 86(15): 155449
CrossRef ADS Google scholar
[12]
P. Moon, M. Koshino. Optical absorption in twisted bilayer graphene. Phys. Rev. B, 2013, 87(20): 205404
CrossRef ADS Google scholar
[13]
M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, L. Fu. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031087
CrossRef ADS Google scholar
[14]
J. Kang, O. Vafek. Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X, 2018, 8(3): 031088
CrossRef ADS Google scholar
[15]
L. A. Gonzalez-Arraga, J. L. Lado, F. Guinea, P. San-Jose. Electrically controllable magnetism in twisted bilayer graphene. Phys. Rev. Lett., 2017, 119(10): 107201
CrossRef ADS Google scholar
[16]
C. Xu, L. Balents. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett., 2018, 121(8): 087001
CrossRef ADS Google scholar
[17]
H. C. Po, L. Zou, A. Vishwanath, T. Senthil. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031089
CrossRef ADS Google scholar
[18]
H. Isobe, N. F. Q. Yuan, L. Fu. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X, 2018, 8(4): 041041
CrossRef ADS Google scholar
[19]
B. Padhi, C. Setty, P. Phillips. Doped twisted bilayer graphene near magic angles: Proximity to Wigner crystallization, not Mott insulation. Nano Lett., 2018, 18(10): 6175
CrossRef ADS Google scholar
[20]
F. Guinea, N. Walet. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl. Acad. Sci. USA, 2018, 115(52): 13174
CrossRef ADS Google scholar
[21]
C. C. Liu, L. D. Zhang, W. Q. Chen, F. Yang. Chiral spin density wave and d+id superconductivity in the magic-angle-twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(21): 217001
CrossRef ADS Google scholar
[22]
H. Guo, X. Zhu, S. Feng, R. T. Scalettar. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys. Rev. B, 2018, 97(23): 235453
CrossRef ADS Google scholar
[23]
Y. P. Lin, R. M. Nandkishore. Kohn−Luttinger superconductivity on two orbital honeycomb lattice. Phys. Rev. B, 2018, 98(21): 214521
CrossRef ADS Google scholar
[24]
F. Wu, A. H. MacDonald, I. Martin. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(25): 257001
CrossRef ADS Google scholar
[25]
B. Lian, Z. Wang, B. A. Bernevig. Twisted bilayer graphene: A phonon-driven superconductor. Phys. Rev. Lett., 2019, 122(25): 257002
CrossRef ADS Google scholar
[26]
T. J. Peltonen, R. Ojajärvi, T. T. Heikkilä. Mean-field theory for superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(22): 220504
CrossRef ADS Google scholar
[27]
D. M. Kennes, J. Lischner, C. Karrasch. Strong correlations and d+id superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(24): 241407
CrossRef ADS Google scholar
[28]
Y. Z. You, A. Vishwanath. Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Mater., 2019, 4(1): 16
CrossRef ADS Google scholar
[29]
X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. Haei Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815): 221
CrossRef ADS Google scholar
[30]
C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng, D. Shi, O. V. Yazyev, G. Zhang. Correlated states in twisted double bilayer graphene. Nat. Phys., 2020, 16(5): 520
CrossRef ADS Google scholar
[31]
Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583(7815): 215
CrossRef ADS Google scholar
[32]
G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, E. Tutuc. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett., 2019, 123(19): 197702
CrossRef ADS Google scholar
[33]
Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, T. Senthil. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B, 2019, 99(7): 075127
CrossRef ADS Google scholar
[34]
M. Koshino. Band structure and topological properties of twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235406
CrossRef ADS Google scholar
[35]
N. R. Chebrolu, B. L. Chittari, J. Jung. Flat bands in twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235417
CrossRef ADS Google scholar
[36]
J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, A. Vishwanath. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer grapheme. Nat. Commun., 2019, 10: 5333
CrossRef ADS Google scholar
[37]
F. Haddadi, Q. Wu, A. J. Kruchkov, O. V. Yazyev. Moiré flat bands in twisted double bilayer graphene. Nano Lett., 2020, 20(4): 2410
CrossRef ADS Google scholar
[38]
F. Wu, S. Das Sarma. Ferromagnetism and superconductivity in twisted double bilayer graphene. Phys. Rev. B, 2020, 101(15): 155149
CrossRef ADS Google scholar
[39]
F.J. CulchacR.B. CapazL.Chico E.Suarez Morell, Flat bands and gaps in twisted double bilayer grapheme, arXiv: 1911.01347 (2019)
[40]
Z.MaS.Li Y.W. ZhengM. M. XiaoH.JiangJ.H. GaoX.C. Xie, Topological flat bands in twisted trilayer grapheme, arXiv: 1905.00622 (2019)
[41]
W. J. Zuo, J. B. Qiao, D. L. Ma, L. J. Yin, G. Sun, J. Y. Zhang, L. Y. Guan, L. He. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene. Phys. Rev. B, 2018, 97(3): 035440
CrossRef ADS Google scholar
[42]
E. Suárez Morell, M. Pacheco, L. Chico, L. Brey. Electronic properties of twisted trilayer graphene. Phys. Rev. B, 2013, 87(12): 125414
CrossRef ADS Google scholar
[43]
X.LiF.Wu A.H. MacDonald, Electronic structure of single-twist trilayer graphene, arXiv: 1907.12338 (2019)
[44]
S. Carr, C. Li, Z. Zhu, E. Kaxiras, S. Sachdev, A. Kruchkov. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett., 2020, 20(5): 3030
CrossRef ADS Google scholar
[45]
S. Xu, M. M. Al Ezzi, N. Balakrishnan, A. Garcia-Ruiz, B. Tsim, C. Mullan, J. Barrier, N. Xin, B. A. Piot, T. Taniguchi, K. Watanabe, A. Carvalho, A. Mishchenko, A. K. Geim, V. I. Fal’ko, S. Adam, A. H. C. Neto, K. S. Novoselov, Y. Shi. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(5): 619
CrossRef ADS Google scholar
[46]
S. Chen, M. He, Y. H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, M. Yankowitz. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(3): 374
CrossRef ADS Google scholar
[47]
H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H. MacDonald, A. F. Young. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836): 66
CrossRef ADS Google scholar
[48]
J. Liu, Z. Ma, J. Gao, X. Dai. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X, 2019, 9(3): 031021
CrossRef ADS Google scholar
[49]
B. L. Chittari, G. Chen, Y. Zhang, F. Wang, J. Jung. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys. Rev. Lett., 2019, 122(1): 016401
CrossRef ADS Google scholar
[50]
G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K. Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang, F. Wang. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
CrossRef ADS Google scholar
[51]
G. Chen, A. Sharpe, P. Gallagher, I. Rosen, E. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, F. Wang. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
CrossRef ADS Google scholar
[52]
F. Wu, T. Lovorn, E. Tutuc, A. H. MacDonald. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
CrossRef ADS Google scholar
[53]
M. H. Naik, M. Jain. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett., 2018, 121(26): 266401
CrossRef ADS Google scholar
[54]
Y. Pan, S. Fölsch, Y. Nie, D. Waters, Y. C. Lin, B. Jariwala, K. Zhang, K. Cho, J. Robinson, R. Feenstra. Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett., 2018, 18(3): 1849
CrossRef ADS Google scholar
[55]
F. Wu, T. Lovorn, E. Tutuc, I. Martin, A. H. Mac-Donald. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett., 2019, 122(8): 086402
CrossRef ADS Google scholar
[56]
F. Conte, D. Ninno, G. Cantele. Electronic properties and interlayer coupling of twisted MoS2/NbSe2 heterobilayers. Phys. Rev. B, 2019, 99(15): 155429
CrossRef ADS Google scholar
[57]
S. Javvaji, J. H. Sun, J. Jung. Topological flat bands without magic angles in massive twisted bilayer graphenes. Phys. Rev. B, 2020, 101(12): 125411
CrossRef ADS Google scholar
[58]
J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845): 249
CrossRef ADS Google scholar
[59]
Z. Hao, A. M. Zimmerman, P. Ledwith, E. Khalaf, D. H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534): 1133
CrossRef ADS Google scholar
[60]
M. Liang, M. M. Xiao, Z. Ma, J. H. Gao. Moiré band structures of the double twisted few-layer graphene. Phys. Rev. B, 2022, 105(19): 195422
CrossRef ADS Google scholar
[61]
See the Supplemental Material for more details.
[62]
F. Guinea, A. H. Castro Neto, N. M. R. Peres. Electronic states and Landau levels in graphene stacks. Phys. Rev. B, 2006, 73(24): 245426
CrossRef ADS Google scholar
[63]
M. Koshino, T. Ando. Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation. Phys. Rev. B, 2007, 76(8): 085425
CrossRef ADS Google scholar
[64]
H. Min, A. H. MacDonald. Chiral decomposition in the electronic structure of graphene multilayers. Phys. Rev. B, 2008, 77(15): 155416
CrossRef ADS Google scholar
[65]
A. Simon. Superconductivity and chemistry. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1788
CrossRef ADS Google scholar
[66]
A. Bussmann-Holder, H. Keller, A. Simon, A. Bianconi. Multi-band superconductivity and the steep band/flat band scenario. Condens. Matter, 2019, 4(4): 91
CrossRef ADS Google scholar
[67]
J. B. Wu, X. Zhang, M. Ijäs, W. P. Han, X. F. Qiao, X. L. Li, D. S. Jiang, A. C. Ferrari, P. H. Tan. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun., 2014, 5(1): 5309
CrossRef ADS Google scholar
[68]
F. Zhang, B. Sahu, H. Min, A. H. MacDonald. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B, 2010, 82(3): 035409
CrossRef ADS Google scholar
[69]
E. Khalaf, A. J. Kruchkov, G. Tarnopolsky, A. Vishwanath. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B, 2019, 100(8): 085109
CrossRef ADS Google scholar
[70]
H. Peng, N. B. M. Schröter, J. Yin, H. Wang, T. F. Chung, H. Yang, S. Ekahana, Z. Liu, J. Jiang, L. Yang, T. Zhang, C. Chen, H. Ni, A. Barinov, Y. P. Chen, Z. Liu, H. Peng, Y. Chen. Substrate doping effect and unusually large angle van Hove singularity evolution in twisted bi- and multilayer graphene. Adv. Mater., 2017, 29(27): 1606741
CrossRef ADS Google scholar
[71]
M. I. B. Utama, R. J. Koch, K. Lee, N. Leconte, H. Li, S. Zhao, L. Jiang, J. Zhu, K. Watanabe, T. Taniguchi. . Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys., 2021, 17: 184
CrossRef ADS Google scholar
[72]
J. J. P. Thompson, D. Pei, H. Peng, H. Wang, N. Channa, H. L. Peng, A. Barinov, N. B. M. Schröter, Y. Chen, M. Mucha-Kruczy’nski. Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy. Nat. Commun., 2020, 11(1): 3582
CrossRef ADS Google scholar
[73]
S. Lisi, X. Lu, T. Benschop, T. A. de Jong, P. Stepanov, J. R. Duran, F. Margot, I. Cucchi, E. Cappelli, A. Hunter, A. Tamai, V. Kandyba, A. Giampietri, A. Barinov, J. Jobst, V. Stalman, M. Leeuwenhoek, K. Watanabe, T. Taniguchi, L. Rademaker, S. J. van der Molen, M. P. Allan, D. K. Efetov, F. Baumberger. Observation of flat bands in twisted bilayer grapheme. Nat. Phys., 2021, 17: 189
CrossRef ADS Google scholar
[74]
A. Vela, M. V. O. Moutinho, F. J. Culchac, P. Venezuela, R. B. Capaz. Electronic structure and optical properties of twisted multilayer graphene. Phys. Rev. B, 2018, 98(15): 155135
CrossRef ADS Google scholar
[75]
T. Cea, N. Walet, F. Guinea. Twists and the electronic structure of graphitic materials. Nano Lett., 2019, 19(12): 8683
CrossRef ADS Google scholar
[76]
A. Grushina, D. K. Ki, M. Koshino, A. Nicolet, C. Faugeras, E. McCann, M. Potemski, A. Morpurgo. Insulating state in tetralayers reveals an even–odd interaction effect in multilayer graphene. Nat. Commun., 2015, 6(1): 6419
CrossRef ADS Google scholar
[77]
Y. Nam, D. K. Ki, D. Soler-Delgado, A. Morpurgo. A family of finite-temperature electronic phase transitions in graphene multilayers. Science, 2018, 362(6412): 324
CrossRef ADS Google scholar
[78]
J. Wang, Z. Liu. Hierarchy of ideal flatbands in chiral twisted multilayer graphene models. Phys. Rev. Lett., 2022, 128(17): 176403
CrossRef ADS Google scholar
[79]
Z. A. H. Goodwin, L. Klebl, V. Vitale, X. Liang, V. Gogtay, X. van Gorp, D. M. Kennes, A. A. Mostofi, J. Lischner. Flat bands, electron interactions, and magnetic order in magic-angle mono-trilayer graphene. Phys. Rev. Mater., 2021, 5(8): 084008
CrossRef ADS Google scholar
[80]
S.ZhangB. XieQ.WuJ.LiuO.V. Yazyev, Chiral decomposition of twisted graphene multilayers with arbitrary stacking, arXiv: 2012.11964 (2020)
[81]
X. Lin, H. Zhu, J. Ni. Emergence of intrinsically isolated flat bands and their topology in fully relaxed twisted multilayer graphene. Phys. Rev. B, 2021, 104(12): 125421
CrossRef ADS Google scholar

Note added

The first draft of the article [arXiv: 2001.07995] was online in 2020. Subsequently, several works also study similar systems using various methods, and the results were consistent with ours [7881].

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1220-z and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1220-z and are accessible for authorized users.

Acknowledgements

We thank Jinhua Sun for helpful discussion.This work is supported by the National Natural Science Foundation of China (Grant Nos. 11874160, 12141401, and 11534001), the National Key Research and Development Program of China (Grant No. 2017YFA0403501), and the Fundamental Research Funds for the Central Universities (HUST: 2017KFYXJJ027).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4735 KB)

Accesses

Citations

Detail

Sections
Recommended

/