Graph attention network for global search of atomic clusters: A case study of Agn (n = 14−26) clusters
Linwei Sai, Li Fu, Qiuying Du, Jijun Zhao
Graph attention network for global search of atomic clusters: A case study of Agn (n = 14−26) clusters
Due to coexistence of huge number of structural isomers, global search for the ground-state structures of atomic clusters is a challenging issue. The difficulty also originates from the computational cost of ab initio methods for describing the potential energy surface. Recently, machine learning techniques have been widely utilized to accelerate materials discovery and molecular simulation. Compared to the commonly used artificial neural network, graph network is naturally suitable for clusters with flexible geometric environment of each atom. Herein we develop a cluster graph attention network (CGANet) by aggregating information of neighboring vertices and edges using attention mechanism, which can precisely predict the binding energy and force of silver clusters with root mean square error of 5.4 meV/atom and mean absolute error of 42.3 meV/Å, respectively. As a proof-of-concept, we have performed global optimization of medium-sized Agn clusters (n = 14−26) by combining CGANet and genetic algorithm. The reported ground-state structures for n = 14−21, have been successfully reproduced, while entirely new lowest-energy structures are obtained for n = 22−26. In addition to the description of potential energy surface, the CGANet is also applied to predict the electronic properties of clusters, such as HOMO energy and HOMO-LUMO gap. With accuracy comparable to ab initio methods and acceleration by at least two orders of magnitude, CGANet holds great promise in global search of lowest-energy structures of large clusters and inverse design of functional clusters.
deep learning / graph attention network / potential surface fitting / Ag clusters / global search
[1] |
W. Gong, Q. Yan. Graph-based deep learning frameworks for molecules and solid-state materials. Comput. Mater. Sci., 2021, 195: 110332
CrossRef
ADS
Google scholar
|
[2] |
P. Friederich, F. Hase, J. Proppe, A. Aspuru-Guzik. Machine-learned potentials for next-generation matter simulations. Nat. Mater., 2021, 20(6): 750
CrossRef
ADS
Google scholar
|
[3] |
A. C. Mater, M. L. Coote. Deep learning in chemistry. J. Chem. Inf. Model., 2019, 59(6): 2545
CrossRef
ADS
Google scholar
|
[4] |
L. Pattanaik, J. B. Ingraham, C. A. Grambow, W. H. Green. Generating transition states of isomerization reactions with deep learning. Phys. Chem. Chem. Phys., 2020, 22(41): 23618
CrossRef
ADS
Google scholar
|
[5] |
C.ColeyW. JinL.RogersT.JamisonT.Jaakkola W.GreenR. BarzilayK.Jensen, A graph-convolutional neural network model for the prediction of chemical reactivity, Chem. Sci. (Camb.) 10(2), 370 (2019)
|
[6] |
F.NikitinO. IsayevV.Strijov, DRACON: Disconnected graph neural network for atom mapping in chemical reactions, Phys. Chem. Chem. Phys. 22(45), 26478 (2020)
|
[7] |
Y. Ouyang, C. Yu, G. Yan, J. Chen. Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys., 2021, 16(4): 43200
CrossRef
ADS
Google scholar
|
[8] |
J. R. Kitchin. Machine learning in catalysis. Nat. Catal., 2018, 1(4): 230
CrossRef
ADS
Google scholar
|
[9] |
C. McGill, M. Forsuelo, Y. Guan, W. H. Green. Predicting infrared spectra with message passing neural networks. J. Chem. Inf. Model., 2021, 61(6): 2594
CrossRef
ADS
Google scholar
|
[10] |
D.PfauJ. S. SpencerA.G. D. G. MatthewsW.M. C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks, Phys. Rev. Res. 2(3), 033429 (2020)
|
[11] |
A. Khan, V. Ghorbanian, D. Lowther. Deep learning for magnetic field estimation. IEEE Trans. Magn., 2019, 55(6): 1
CrossRef
ADS
Google scholar
|
[12] |
B.Sanchez-LengelingJ.N. WeiB.K. Lee R.C. GerkinA. Aspuru-GuzikA.B. Wiltschko, Machine learning for scent: Learning generalizable perceptual representations of small molecules, arXiv: 1910.10685 (2019)
|
[13] |
J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun. Graph neural networks: A review of methods and applications. AI Open, 2020, 1: 57
CrossRef
ADS
Google scholar
|
[14] |
J. Behler, M. Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 2007, 98(14): 146401
CrossRef
ADS
Google scholar
|
[15] |
J. Behler. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys., 2011, 134(7): 074106
CrossRef
ADS
Google scholar
|
[16] |
J.S. SmithO. IsayevA.E. Roitberg, ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost, Chem. Sci. (Camb.) 8(4), 3192 (2017)
|
[17] |
X.GaoF. RamezanghorbaniO.Isayev J.S. SmithA. E. RoitbergA.N. I. Torch, A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials, J. Chem. Inf. Model. 60(7), 3408 (2020)
|
[18] |
Z.L. GlickD. P. MetcalfA.KoutsoukasS.A. SpronkD.L. CheneyC.D. Sherrill, AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials, J. Chem. Phys. 153(4), 044112 (2020)
|
[19] |
R.LotF. PellegriniY.ShaiduE.Küçükbenli, PANNA: Properties from artificial neural network architectures, Comput. Phys. Commun. 256, 107402 (2020)
|
[20] |
R. Modee, S. Laghuvarapu, U. D. Priyakumar. Benchmark study on deep neural network potentials for small organic molecules. J. Comput. Chem., 2022, 43(5): 308
CrossRef
ADS
Google scholar
|
[21] |
L. Cao, P. Wang, L. Sai, J. Fu, X. Duan. Artificial neural network potential for gold clusters. Chin. Phys. B, 2020, 29(11): 117304
CrossRef
ADS
Google scholar
|
[22] |
K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Muller, A. Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nat. Commun., 2017, 8(1): 13890
CrossRef
ADS
Google scholar
|
[23] |
K. T. Schutt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, K. R. Muller. SchNet − A deep learning architecture for molecules and materials. J. Chem. Phys., 2018, 148(24): 241722
CrossRef
ADS
Google scholar
|
[24] |
J.GilmerS. S. SchoenholzP.F. RileyO.VinyalsG.E. Dahl, Neural message passing for quantum chemistry, in: International Conference on Machine Learning (2017)
|
[25] |
N. Lubbers, J. S. Smith, K. Barros. Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys., 2018, 148(24): 241715
CrossRef
ADS
Google scholar
|
[26] |
T. Xie, J. C. Grossman. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett., 2018, 120(14): 145301
CrossRef
ADS
Google scholar
|
[27] |
O. T. Unke, M. Meuwly. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput., 2019, 15(6): 3678
CrossRef
ADS
Google scholar
|
[28] |
C. Chen, W. Ye, Y. Zuo, C. Zheng, S. P. Ong. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater., 2019, 31(9): 3564
CrossRef
ADS
Google scholar
|
[29] |
C.LuQ.Liu C.WangZ. HuangP.LinL.He, Molecular property prediction: A multilevel quantum interactions modeling perspective, in: Association for the Advancement of Artificial Intelligence (2019)
|
[30] |
J.KlicperaJ. GroßS.Günnemann, Directional message passing for molecular graphs, in: International Conference on Learning Representations (2020)
|
[31] |
C. Qian, Y. Xiong, X. Chen. Directed graph attention neural network utilizing 3D coordinates for molecular property prediction. Comput. Mater. Sci., 2021, 200: 110761
CrossRef
ADS
Google scholar
|
[32] |
Z. Liu, L. Lin, Q. Jia, Z. Cheng, Y. Jiang, Y. Guo, J. Ma. Transferable multilevel attention neural network for accurate prediction of quantum chemistry properties via multitask learning. J. Chem. Inf. Model., 2021, 61(3): 1066
CrossRef
ADS
Google scholar
|
[33] |
D.BahdanauK. ChoY.Bengio, Neural machine translation by jointly learning to align and translate, in: International Conference on Learning Representations (2014)
|
[34] |
T.N. KipfM. Welling, Semi-supervised classification with graph convolutional networks, arXiv: 1609.02907 (2016)
|
[35] |
P.VeličkovićG.CucurullA.Casanova A.RomeroP. LioY.Bengio, Graph attention networks, arXiv: 1710.10903 (2017)
|
[36] |
J. Zhao, R. Shi, L. Sai, X. Huang, Y. Su. Comprehensive genetic algorithm Forab initioglobal optimisation of clusters. Mol. Simul., 2016, 42(10): 809
CrossRef
ADS
Google scholar
|
[37] |
B. Delley. From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000, 113(18): 7756
CrossRef
ADS
Google scholar
|
[38] |
J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[39] |
D. Tian, H. Zhang, J. Zhao. Structure and structural evolution of Agn (n = 3–22) clusters using a genetic algorithm and density functional theory method. Solid State Commun., 2007, 144(3−4): 174
CrossRef
ADS
Google scholar
|
[40] |
M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, C. Felix. Optical absorption of small silver clusters: Agn (n = 4−22). J. Chem. Phys., 2008, 129(19): 194108
CrossRef
ADS
Google scholar
|
[41] |
K. Baishya, J. C. Idrobo, S. Öğüt, M. Yang, K. Jackson, J. Jellinek. Optical absorption spectra of intermediate-size silver clusters from first principles. Phys. Rev. B, 2008, 78(7): 075439
CrossRef
ADS
Google scholar
|
[42] |
M. Chen, J. E. Dyer, K. Li, D. A. Dixon. Prediction of structures and atomization energies of small silver clusters, (Ag)n, n < 100. J. Phys. Chem. A, 2013, 117(34): 8298
CrossRef
ADS
Google scholar
|
[43] |
M. Liao, J. D. Watts, M. Huang. Theoretical comparative study of oxygen adsorption on neutral and anionic Agn and Aun clusters (n = 2–25). J. Phys. Chem. C, 2014, 118(38): 21911
CrossRef
ADS
Google scholar
|
[44] |
M. L. McKee, A. Samokhvalov. Density functional study of neutral and charged silver clusters Agn with n = 2−22: Evolution of properties and structure. J. Phys. Chem. A, 2017, 121(26): 5018
CrossRef
ADS
Google scholar
|
[45] |
B. Yin, Q. Du, L. Geng, H. Zhang, Z. Luo, S. Zhou, J. Zhao. Superatomic signature and reactivity of silver clusters with oxygen: double magic Ag17– with geometric and electronic shell closure. CCS Chemistry, 2021, 3(12): 219
CrossRef
ADS
Google scholar
|
[46] |
J. Weinreich, A. Römer, M. L. Paleico, J. Behler. Properties of α-brass nanoparticles (1): Neural network potential energy surface. J. Phys. Chem. C, 2020, 124(23): 12682
CrossRef
ADS
Google scholar
|
[47] |
S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, K. R. Müller. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv., 2017, 3(5): e1603015
CrossRef
ADS
Google scholar
|
[48] |
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery. General atomic and molecular electronic structure system. J. Comput. Chem., 1993, 14(11): 1347
CrossRef
ADS
Google scholar
|
[49] |
J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 2003, 91(14): 146401
CrossRef
ADS
Google scholar
|
[50] |
G. Alameddin, J. Hunter, D. Cameron, M. M. Kappes. Electronic and geometric structure in silver clusters. Chem. Phys. Lett., 1992, 192(1): 122
CrossRef
ADS
Google scholar
|
[51] |
T. Koopmans. Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica, 1933, 1: 104
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |