A multi-band atomic candle with microwave-dressed Rydberg atoms
Yafen Cai, Shuai Shi, Yijia Zhou, Jianhao Yu, Yali Tian, Yitong Li, Kuan Zhang, Chenhao Du, Weibin Li, Lin Li
A multi-band atomic candle with microwave-dressed Rydberg atoms
Stabilizing important physical quantities to atom-based standards lies at the heart of modern atomic, molecular and optical physics, and is widely applied to the field of precision metrology. Of particular importance is the atom-based microwave field amplitude stabilizer, the so-called atomic candle. Previous atomic candles are realized with atoms in their ground state, and hence suffer from the lack of frequency band tunability and small stabilization bandwidth, severely limiting their development and potential applications. To tackle these limitations, we employ microwave-dressed Rydberg atoms to realize a novel atomic candle that features multi-band frequency tunability and large stabilization bandwidth. We demonstrate amplitude stabilization of microwave field from C-band to Ka-band, which could be extended to quasi-DC and terahertz fields by exploring abundant Rydberg levels. Our atomic candle achieves stabilization bandwidth of 100 Hz, outperforming previous ones by more than two orders of magnitude. Our simulation indicates the stabilization bandwidth can be further increased up to 100 kHz. Our work paves a route to develop novel electric field control and applications with a noise-resilient, miniaturized, sensitive and broadband atomic candle.
Rydberg atoms / microwave / atomic spectroscopy
[1] |
L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. Deneva.
CrossRef
ADS
Google scholar
|
[2] |
R. M. Shannon, J. P. Macquart, K. W. Bannister, R. D. Ekers, C. W. James, S. Osłowski, H. Qiu, M. Sammons, A. W. Hotan, M. A. Voronkov.
CrossRef
ADS
Google scholar
|
[3] |
B. Marcote, K. Nimmo, J. W. T. Hessels, S. P. Tendulkar, C. G. Bassa, Z. Paragi, A. Keimpema, M. Bhardwaj, R. Karuppusamy, V. M. Kaspi.
CrossRef
ADS
Google scholar
|
[4] |
S. Bae, S. R. Levick, L. Heidrich, P. Magdon, B. F. Leutner, S. Wöllauer, A. Serebryanyk, T. Nauss, P. Krzystek, M. M. Gossner, P. Schall, C. Heibl, C. Bässler, I. Doerfler, E. D. Schulze, F. S. Krah, H. Culmsee, K. Jung, M. Heurich, M. Fischer, S. Seibold, S. Thorn, T. Gerlach, T. Hothorn, W. W. Weisser, J. Müller. Radar vision in the mapping of forest biodiversity from space. Nat. Commun., 2019, 10(1): 4757
CrossRef
ADS
Google scholar
|
[5] |
D. E. Alsdorf, J. M. Melack, T. Dunne, L. A. K. Mertes, L. L. Hess, L. C. Smith. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature, 2000, 404(6774): 174
CrossRef
ADS
Google scholar
|
[6] |
J.Wells, Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications, Artech House, 2010
|
[7] |
C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, D. J. Wineland. Microwave quantum logic gates for trapped ions. Nature, 2011, 476(7359): 181
CrossRef
ADS
Google scholar
|
[8] |
T. Swan-Wood, J. G. Coffer, J. C. Camparo. Precision measurements of absorption and refractive-index using an atomic candle. IEEE Trans. Instrum. Meas., 2001, 50(5): 1229
CrossRef
ADS
Google scholar
|
[9] |
C.James, Applications of the atomic candle: Accessing low-frequency amplitude variations via an atomic time interval, in: Proc. SPIE. 2003
|
[10] |
M.F. Cao, Control and characterisation of a Rydberg spin system to explore many-body physics, Doctoral dissertation
|
[11] |
M. Gozzelino, S. Micalizio, F. Levi, A. Godone, C. E. Calosso. Reducing cavity-pulling shift in Ramsey-operated compact clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2018, 65(7): 1294
CrossRef
ADS
Google scholar
|
[12] |
V. I. Yudin, A. V. Taichenachev, M. Y. Basalaev, T. Zanon-Willette, J. W. Pollock, M. Shuker, E. A. Donley, J. Kitching. Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions. Phys. Rev. Appl., 2018, 9(5): 054034
CrossRef
ADS
Google scholar
|
[13] |
J. C. Camparo. Atomic stabilization of electromagnetic field strength using Rabi resonances. Phys. Rev. Lett., 1998, 80(2): 222
CrossRef
ADS
Google scholar
|
[14] |
J. G. Coffer, J. C. Camparo. Atomic stabilization of field intensity using Rabi resonances. Phys. Rev. A, 2000, 62(1): 013812
CrossRef
ADS
Google scholar
|
[15] |
J. G. Coffer, B. Sickmiller, A. Presser, J. C. Camparo. Line shapes of atomic-candle-type Rabi resonances. Phys. Rev. A, 2002, 66(2): 023806
CrossRef
ADS
Google scholar
|
[16] |
A. Tretiakov, L. J. LeBlanc. Microwave Rabi resonances beyond the small-signal regime. Phys. Rev. A, 2019, 99(4): 043402
CrossRef
ADS
Google scholar
|
[17] |
T.F. GallagherRydbergAtoms, Cambridge Monographs on Atomic, Molecular and Chemical Physics, Cambridge: Cambridge University Press, 1994
|
[18] |
M. G. Bason, M. Tanasittikosol, A. Sargsyan, A. K. Mohapatra, D. Sarkisyan, R. M. Potvliege, C. S. Adams. Enhanced electric field sensitivity of RF-dressed Rydberg dark states. New J. Phys., 2010, 12(6): 065015
CrossRef
ADS
Google scholar
|
[19] |
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J. P. Shaffer. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 2012, 8(11): 819
CrossRef
ADS
Google scholar
|
[20] |
H. Q. Fan, S. Kumar, R. Daschner, H. Kübler, J. P. Shaffer. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. Opt. Lett., 2014, 39(10): 3030
CrossRef
ADS
Google scholar
|
[21] |
D. A. Anderson, S. A. Miller, G. Raithel, J. A. Gordon, M. L. Butler, C. L. Holloway. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell. Phys. Rev. Appl., 2016, 5(3): 034003
CrossRef
ADS
Google scholar
|
[22] |
M. T. Simons, J. A. Gordon, C. L. Holloway. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency. J. Appl. Phys., 2016, 120(12): 123103
CrossRef
ADS
Google scholar
|
[23] |
Z. Song, H. Liu, X. Liu, W. Zhang, H. Zou, J. Zhang, J. Qu. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Opt. Express, 2019, 27(6): 8848
CrossRef
ADS
Google scholar
|
[24] |
D. A. Anderson, R. E. Sapiro, G. Raithel. Rydberg atoms for radio-frequency communications and sensing: Atomic receivers for pulsed RF field and phase detection. IEEE Aerosp. Electron. Syst. Mag., 2020, 35(4): 48
CrossRef
ADS
Google scholar
|
[25] |
Y. Y. Jau, T. Carter. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz. Phys. Rev. Appl., 2020, 13(5): 054034
CrossRef
ADS
Google scholar
|
[26] |
K. Y. Liao, H. T. Tu, S. Z. Yang, C. J. Chen, X. H. Liu, J. Liang, X. D. Zhang, H. Yan, S. L. Zhu. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A, 2020, 101(5): 053432
CrossRef
ADS
Google scholar
|
[27] |
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, S. Jia. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 2020, 16(9): 911
CrossRef
ADS
Google scholar
|
[28] |
D. H. Meyer, P. D. Kunz, K. C. Cox. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Appl., 2021, 15(1): 014053
CrossRef
ADS
Google scholar
|
[29] |
M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633
CrossRef
ADS
Google scholar
|
[30] |
A. K. Mohapatra, T. R. Jackson, C. S. Adams. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett., 2007, 98(11): 113003
CrossRef
ADS
Google scholar
|
[31] |
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, J. P. Shaffer. Atom based RF electric field sensing. J. Phys. At. Mol. Opt. Phys., 2015, 48(20): 202001
CrossRef
ADS
Google scholar
|
[32] |
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, C. S. Adams. Microwave dressing of Rydberg dark states. J. Phys. At. Mol. Opt. Phys., 2011, 44(18): 184020
CrossRef
ADS
Google scholar
|
[33] |
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, K. J. Weatherill. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics, 2017, 11(1): 40
CrossRef
ADS
Google scholar
|
[34] |
S. S. Hsiao, K. T. Chen, I. A. Yu. Mean field theory of weakly-interacting Rydberg polaritons in the EIT system based on the nearest-neighbor distribution. Opt. Express, 2020, 28(19): 28414
CrossRef
ADS
Google scholar
|
[35] |
M. T. Simons, A. H. Haddab, J. A. Gordon, C. L. Holloway. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave. Appl. Phys. Lett., 2019, 114(11): 114101
CrossRef
ADS
Google scholar
|
[36] |
Y. Li, M. Xiao. Transient properties of an electromagnetically induced transparency in three-level atoms. Opt. Lett., 1995, 20(13): 1489
CrossRef
ADS
Google scholar
|
[37] |
K. C. Cox, D. H. Meyer, F. K. Fatemi, P. D. Kunz. Quantum-limited atomic receiver in the electrically small regime. Phys. Rev. Lett., 2018, 121(11): 110502
CrossRef
ADS
Google scholar
|
[38] |
J.P. ShafferH.Kübler, A read-out enhancement for microwave electric field sensing with Rydberg atoms, in: Proc. SPIE. 2018
|
[39] |
I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions. Phys. Rev. A, 2011, 84(5): 053409
CrossRef
ADS
Google scholar
|
[40] |
W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, 2014
|
[41] |
K. A. A. Khumaeni, M. Miyabe, I. Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission. Front. Phys., 2016, 11(4): 114209
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |