A multi-band atomic candle with microwave-dressed Rydberg atoms

Yafen Cai, Shuai Shi, Yijia Zhou, Jianhao Yu, Yali Tian, Yitong Li, Kuan Zhang, Chenhao Du, Weibin Li, Lin Li

PDF(4382 KB)
PDF(4382 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 12302. DOI: 10.1007/s11467-022-1218-6
RESEARCH ARTICLE
RESEARCH ARTICLE

A multi-band atomic candle with microwave-dressed Rydberg atoms

Author information +
History +

Abstract

Stabilizing important physical quantities to atom-based standards lies at the heart of modern atomic, molecular and optical physics, and is widely applied to the field of precision metrology. Of particular importance is the atom-based microwave field amplitude stabilizer, the so-called atomic candle. Previous atomic candles are realized with atoms in their ground state, and hence suffer from the lack of frequency band tunability and small stabilization bandwidth, severely limiting their development and potential applications. To tackle these limitations, we employ microwave-dressed Rydberg atoms to realize a novel atomic candle that features multi-band frequency tunability and large stabilization bandwidth. We demonstrate amplitude stabilization of microwave field from C-band to Ka-band, which could be extended to quasi-DC and terahertz fields by exploring abundant Rydberg levels. Our atomic candle achieves stabilization bandwidth of 100 Hz, outperforming previous ones by more than two orders of magnitude. Our simulation indicates the stabilization bandwidth can be further increased up to 100 kHz. Our work paves a route to develop novel electric field control and applications with a noise-resilient, miniaturized, sensitive and broadband atomic candle.

Graphical abstract

Keywords

Rydberg atoms / microwave / atomic spectroscopy

Cite this article

Download citation ▾
Yafen Cai, Shuai Shi, Yijia Zhou, Jianhao Yu, Yali Tian, Yitong Li, Kuan Zhang, Chenhao Du, Weibin Li, Lin Li. A multi-band atomic candle with microwave-dressed Rydberg atoms. Front. Phys., 2023, 18(1): 12302 https://doi.org/10.1007/s11467-022-1218-6

References

[1]
L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. Deneva. . A repeating fast radio burst. Nature, 2016, 531(7593): 202
CrossRef ADS Google scholar
[2]
R. M. Shannon, J. P. Macquart, K. W. Bannister, R. D. Ekers, C. W. James, S. Osłowski, H. Qiu, M. Sammons, A. W. Hotan, M. A. Voronkov. . The dispersion–brightness relation for fast radio bursts from a wide-field survey. Nature, 2018, 562(7727): 386
CrossRef ADS Google scholar
[3]
B. Marcote, K. Nimmo, J. W. T. Hessels, S. P. Tendulkar, C. G. Bassa, Z. Paragi, A. Keimpema, M. Bhardwaj, R. Karuppusamy, V. M. Kaspi. . A repeating fast radio burst source localized to a nearby spiral galaxy. Nature, 2020, 577(7789): 190
CrossRef ADS Google scholar
[4]
S. Bae, S. R. Levick, L. Heidrich, P. Magdon, B. F. Leutner, S. Wöllauer, A. Serebryanyk, T. Nauss, P. Krzystek, M. M. Gossner, P. Schall, C. Heibl, C. Bässler, I. Doerfler, E. D. Schulze, F. S. Krah, H. Culmsee, K. Jung, M. Heurich, M. Fischer, S. Seibold, S. Thorn, T. Gerlach, T. Hothorn, W. W. Weisser, J. Müller. Radar vision in the mapping of forest biodiversity from space. Nat. Commun., 2019, 10(1): 4757
CrossRef ADS Google scholar
[5]
D. E. Alsdorf, J. M. Melack, T. Dunne, L. A. K. Mertes, L. L. Hess, L. C. Smith. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature, 2000, 404(6774): 174
CrossRef ADS Google scholar
[6]
J.Wells, Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications, Artech House, 2010
[7]
C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, D. J. Wineland. Microwave quantum logic gates for trapped ions. Nature, 2011, 476(7359): 181
CrossRef ADS Google scholar
[8]
T. Swan-Wood, J. G. Coffer, J. C. Camparo. Precision measurements of absorption and refractive-index using an atomic candle. IEEE Trans. Instrum. Meas., 2001, 50(5): 1229
CrossRef ADS Google scholar
[9]
C.James, Applications of the atomic candle: Accessing low-frequency amplitude variations via an atomic time interval, in: Proc. SPIE. 2003
[10]
M.F. Cao, Control and characterisation of a Rydberg spin system to explore many-body physics, Doctoral dissertation
[11]
M. Gozzelino, S. Micalizio, F. Levi, A. Godone, C. E. Calosso. Reducing cavity-pulling shift in Ramsey-operated compact clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2018, 65(7): 1294
CrossRef ADS Google scholar
[12]
V. I. Yudin, A. V. Taichenachev, M. Y. Basalaev, T. Zanon-Willette, J. W. Pollock, M. Shuker, E. A. Donley, J. Kitching. Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions. Phys. Rev. Appl., 2018, 9(5): 054034
CrossRef ADS Google scholar
[13]
J. C. Camparo. Atomic stabilization of electromagnetic field strength using Rabi resonances. Phys. Rev. Lett., 1998, 80(2): 222
CrossRef ADS Google scholar
[14]
J. G. Coffer, J. C. Camparo. Atomic stabilization of field intensity using Rabi resonances. Phys. Rev. A, 2000, 62(1): 013812
CrossRef ADS Google scholar
[15]
J. G. Coffer, B. Sickmiller, A. Presser, J. C. Camparo. Line shapes of atomic-candle-type Rabi resonances. Phys. Rev. A, 2002, 66(2): 023806
CrossRef ADS Google scholar
[16]
A. Tretiakov, L. J. LeBlanc. Microwave Rabi resonances beyond the small-signal regime. Phys. Rev. A, 2019, 99(4): 043402
CrossRef ADS Google scholar
[17]
T.F. GallagherRydbergAtoms, Cambridge Monographs on Atomic, Molecular and Chemical Physics, Cambridge: Cambridge University Press, 1994
[18]
M. G. Bason, M. Tanasittikosol, A. Sargsyan, A. K. Mohapatra, D. Sarkisyan, R. M. Potvliege, C. S. Adams. Enhanced electric field sensitivity of RF-dressed Rydberg dark states. New J. Phys., 2010, 12(6): 065015
CrossRef ADS Google scholar
[19]
J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J. P. Shaffer. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 2012, 8(11): 819
CrossRef ADS Google scholar
[20]
H. Q. Fan, S. Kumar, R. Daschner, H. Kübler, J. P. Shaffer. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. Opt. Lett., 2014, 39(10): 3030
CrossRef ADS Google scholar
[21]
D. A. Anderson, S. A. Miller, G. Raithel, J. A. Gordon, M. L. Butler, C. L. Holloway. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell. Phys. Rev. Appl., 2016, 5(3): 034003
CrossRef ADS Google scholar
[22]
M. T. Simons, J. A. Gordon, C. L. Holloway. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency. J. Appl. Phys., 2016, 120(12): 123103
CrossRef ADS Google scholar
[23]
Z. Song, H. Liu, X. Liu, W. Zhang, H. Zou, J. Zhang, J. Qu. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Opt. Express, 2019, 27(6): 8848
CrossRef ADS Google scholar
[24]
D. A. Anderson, R. E. Sapiro, G. Raithel. Rydberg atoms for radio-frequency communications and sensing: Atomic receivers for pulsed RF field and phase detection. IEEE Aerosp. Electron. Syst. Mag., 2020, 35(4): 48
CrossRef ADS Google scholar
[25]
Y. Y. Jau, T. Carter. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz. Phys. Rev. Appl., 2020, 13(5): 054034
CrossRef ADS Google scholar
[26]
K. Y. Liao, H. T. Tu, S. Z. Yang, C. J. Chen, X. H. Liu, J. Liang, X. D. Zhang, H. Yan, S. L. Zhu. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A, 2020, 101(5): 053432
CrossRef ADS Google scholar
[27]
M. Jing, Y. Hu, J. Ma, H. Zhang, L. Zhang, L. Xiao, S. Jia. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 2020, 16(9): 911
CrossRef ADS Google scholar
[28]
D. H. Meyer, P. D. Kunz, K. C. Cox. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Appl., 2021, 15(1): 014053
CrossRef ADS Google scholar
[29]
M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633
CrossRef ADS Google scholar
[30]
A. K. Mohapatra, T. R. Jackson, C. S. Adams. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett., 2007, 98(11): 113003
CrossRef ADS Google scholar
[31]
H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, J. P. Shaffer. Atom based RF electric field sensing. J. Phys. At. Mol. Opt. Phys., 2015, 48(20): 202001
CrossRef ADS Google scholar
[32]
M. Tanasittikosol, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, R. M. Potvliege, C. S. Adams. Microwave dressing of Rydberg dark states. J. Phys. At. Mol. Opt. Phys., 2011, 44(18): 184020
CrossRef ADS Google scholar
[33]
C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, K. J. Weatherill. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics, 2017, 11(1): 40
CrossRef ADS Google scholar
[34]
S. S. Hsiao, K. T. Chen, I. A. Yu. Mean field theory of weakly-interacting Rydberg polaritons in the EIT system based on the nearest-neighbor distribution. Opt. Express, 2020, 28(19): 28414
CrossRef ADS Google scholar
[35]
M. T. Simons, A. H. Haddab, J. A. Gordon, C. L. Holloway. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave. Appl. Phys. Lett., 2019, 114(11): 114101
CrossRef ADS Google scholar
[36]
Y. Li, M. Xiao. Transient properties of an electromagnetically induced transparency in three-level atoms. Opt. Lett., 1995, 20(13): 1489
CrossRef ADS Google scholar
[37]
K. C. Cox, D. H. Meyer, F. K. Fatemi, P. D. Kunz. Quantum-limited atomic receiver in the electrically small regime. Phys. Rev. Lett., 2018, 121(11): 110502
CrossRef ADS Google scholar
[38]
J.P. ShafferH.Kübler, A read-out enhancement for microwave electric field sensing with Rydberg atoms, in: Proc. SPIE. 2018
[39]
I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions. Phys. Rev. A, 2011, 84(5): 053409
CrossRef ADS Google scholar
[40]
W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, 2014
[41]
K. A. A. Khumaeni, M. Miyabe, I. Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission. Front. Phys., 2016, 11(4): 114209
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1218-6 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1218-6.

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2021YFA1402003, and the National Natural Science Foundation of China (Grant Nos. 12004127, 12004126, 12104173 and 12005067). W. L. acknowledges support from the EPSRC through Grant No. EP/R04340X/1 via the QuantERA project “ERyQSenS”, the UKIERI-UGC Thematic Partnership (IND/CONT/G/16-17/73), and the Royal Society through the International Exchanges Cost Share award No. IEC\NSFC\181078. Y. Z. is supported by the National Natural Science Foundation of China (Grant No. 12088101), and NSAF (Grant No. U1930403).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4382 KB)

Accesses

Citations

Detail

Sections
Recommended

/