Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment

Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia

PDF(3766 KB)
PDF(3766 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13305. DOI: 10.1007/s11467-022-1216-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment

Author information +
History +

Abstract

Constructing two-dimensional (2D) van der Waals heterostructures (vdWHs) can expand the electronic and optoelectronic applications of 2D semiconductors. However, the work on the 2D vdWHs with robust band alignment is still scarce. Here, we employ a global structure search approach to construct the vdWHs with monolayer MoSi2N4 and wide-bandgap GeO2. The studies show that the GeO2/MoSi2N4 vdWHs have the characteristics of direct structures with the band gap of 0.946 eV and type-II band alignment with GeO2 and MoSi2N4 layers as the conduction band minimum (CBM) and valence band maximum (VBM), respectively. Also, the direct-to-indirect band gap transition can be achieved by applying biaxial strain. In particular, the 2D GeO2/MoSi2N4 vdWHs show a robust type-II band alignment under the effects of biaxial strain, interlayer distance and external electric field. The results provide a route to realize the robust type-II band alignment vdWHs, which is helpful for the implementation of optoelectronic nanodevices with stable characteristics.

Graphical abstract

Keywords

van der Waals heterostructures / wide gap material / global structure search / robust type-II band alignment

Cite this article

Download citation ▾
Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment. Front. Phys., 2023, 18(1): 13305 https://doi.org/10.1007/s11467-022-1216-8

References

[1]
W. Wang, C. Si, W. Lei, F. Xiao, Y. Liu, C. Autieri, X. Ming. Stacking order and Coulomb correlation effect in the layered charge density wave phase of 1T-NbS2. Phys. Rev. B, 2022, 105(3): 035119
CrossRef ADS Google scholar
[2]
A. Aharon-Steinberg, A. Marguerite, D. J. Perello, K. Bagani, T. Holder, Y. Myasoedov, L. S. Levitov, A. K. Geim, E. Zeldov. Long-range nontopological edge currents in charge-neutral graphene. Nature, 2021, 593(7860): 528
CrossRef ADS Google scholar
[3]
X. Li, P. Yuan, L. Li, M. He, J. Li, C. Xia. Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: Dielectric layer effect. Phys. Rev. Appl., 2022, 18(4): 044012
CrossRef ADS Google scholar
[4]
T. Wang, A. Dong, X. Zhang, R. K. Hocking, C. Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys., 2022, 17(2): 23501
CrossRef ADS Google scholar
[5]
Q. Q. Kong, X. G. An, J. Zhang, W. T. Yao, C. H. Sun. Design of heterojunction with components in different dimensions for electrocatalysis applications. Front. Phys., 2022, 17(4): 43601
CrossRef ADS Google scholar
[6]
C. Long, Y. Dai, Z. R. Gong, H. Jin. Robust type-II band alignment in Janus-MoSSe bilayer with extremely long carrier lifetime induced by the intrinsic electric field. Phys. Rev. B, 2019, 99(11): 115316
CrossRef ADS Google scholar
[7]
N. Ubrig, E. Ponomarev, J. Zultak, D. Domaretskiy, V. Zolyomi, D. Terry, J. Howarth, I. Gutierrez-Lezama, A. Zhukov, Z. R. Kudrynskyi, Z. D. Kovalyuk, A. Patane, T. Taniguchi, K. Watanabe, R. V. Gorbachev, V. I. Fal’ko, A. F. Morpurgo. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater., 2020, 19(3): 299
CrossRef ADS Google scholar
[8]
J. G. Azadani, S. Lee, H. R. Kim, H. Alsalman, Y. K. Kwon, J. Tersoff, T. Low. Simple linear response model for predicting energy band alignment of two-dimensional vertical heterostructures. Phys. Rev. B, 2021, 103(20): 205129
CrossRef ADS Google scholar
[9]
F. H. Davies, C. J. Price, N. T. Taylor, S. G. Davies, S. P. Hepplestone. Band alignment of transition metal dichalcogenide heterostructures. Phys. Rev. B, 2021, 103(4): 045417
CrossRef ADS Google scholar
[10]
P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, X. Xu. Observation of long-lived interlayer excitons in monolayer MoSe2−WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242
CrossRef ADS Google scholar
[11]
P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, X. Xu. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688
CrossRef ADS Google scholar
[12]
Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, Y. Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2020, 16(1): 13501
[13]
X. Li, T. Liu, L. Li, M. He, C. Shen, J. Li, C. Xia. Reconfifigurable band alignment of m-GaS/n-XTe2 (X = Mo, W) multilayer van der Waals heterostructures for photoelectric applications. Phys. Rev. B, 2022, 106(12): 125306
CrossRef ADS Google scholar
[14]
D. Wijethunge, L. Zhang, C. Tang, A. Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
CrossRef ADS Google scholar
[15]
S. Ghosh, A. Varghese, H. Jawa, Y. Yin, N. V. Medhekar, S. Lodha. Polarity-tunable photocurrent through band alignment engineering in a high-speed WSe2/SnSe2 diode with large negative responsivity. ACS Nano, 2022, 16(3): 4578
CrossRef ADS Google scholar
[16]
Y. Zhu, D. Zhang, H. Ye, D. Bai, M. Li, G. P. Zhang, J. Zhang, J. Wang. Magnetic and electronic properties of AlN/VSe2 van der Waals heterostructures from combined first-principles and Schrödinger−Poisson simulations. Phys. Rev. Appl., 2022, 18(2): 024012
CrossRef ADS Google scholar
[17]
Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, X. Q. Chen, H. M. Cheng, W. Ren. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020, 369(6504): 670
CrossRef ADS Google scholar
[18]
R. Islam, B. Ghosh, C. Autieri, S. Chowdhury, A. Bansil, A. Agarwal, B. Singh. Tunable spin polarization and electronic structure of bottom-up synthesized MoSi2N4 materials. Phys. Rev. B, 2021, 104(20): L201112
CrossRef ADS Google scholar
[19]
A. Bafekry, M. Faraji, M. M. Fadlallah, A. Bagheri Khatibani, A. abdolahzadeh Ziabari, M. Ghergherehchi, S. Nedaei, S. F. Shayesteh, D. Gogova. Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Appl. Surf. Sci., 2021, 559: 149862
CrossRef ADS Google scholar
[20]
Q. Wu, L. Cao, Y. S. Ang, L. K. Ang. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118(11): 113102
CrossRef ADS Google scholar
[21]
H. Zhong, W. Xiong, P. Lv, J. Yu, S. Yuan, Strain-induced semiconductor to metal transition in MA2Z4 bilayers (M=Ti . Mo; A=Si; Z=N, P). Phys. Rev. B, 2021, 103(8): 085124
CrossRef ADS Google scholar
[22]
S. Li, W. Wu, X. Feng, S. Guan, W. Feng, Y. Yao, S. A. Yang, Valley-dependent properties of monolayer MoSi2N4 . WSi2N4, and MoSi2As4. Phys. Rev. B, 2020, 102(23): 235435
CrossRef ADS Google scholar
[23]
T. Zhong, Y. Ren, Z. Zhang, J. Gao, M. Wu. Sliding ferroelectricity in two-dimensional MoA2N4 (A = Si or Ge) bilayers: High polarizations and Moiré potentials. J. Mater. Chem. A, 2021, 9(35): 19659
CrossRef ADS Google scholar
[24]
L. Wang, Y. Shi, M. Liu, A. Zhang, Y. L. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H. M. Cheng, Y. Li, X. Q. Chen. Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun., 2021, 12(1): 2361
CrossRef ADS Google scholar
[25]
Q. Wu, L. K. Ang. Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction. Appl. Phys. Lett., 2022, 120(2): 022401
CrossRef ADS Google scholar
[26]
Y. Zang, Q. Wu, W. Du, Y. Dai, B. Huang, Y. Ma. Activating electrocatalytic hydrogen evolution performance of two-dimensional MSi2N4(M=Mo, W): A theoretical prediction. Phys. Rev. Mater., 2021, 5(4): 045801
CrossRef ADS Google scholar
[27]
J. Yuan, Q. Wei, M. Sun, X. Yan, Y. Cai, L. Shen, U. Schwingenschlögl. Protected valley states and generation of valley- and spin-polarized current in monolayer MA2Z4. Phys. Rev. B, 2022, 105(19): 195151
CrossRef ADS Google scholar
[28]
B. Mortazavi, B. Javvaji, F. Shojaei, T. Rabczuk, A. V. Shapeev, X. Y. Zhuang. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy, 2021, 82: 105716
CrossRef ADS Google scholar
[29]
Y. Yin, M. Yi, W. Guo. High and anomalous thermal conductivity in monolayer MSi2Z4 semiconductors. ACS Appl. Mater. Interfaces, 2021, 13(38): 45907
CrossRef ADS Google scholar
[30]
C. C. Jian, X. C. Ma, J. Q. Zhang, X. Yong. Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties. J. Phys. Chem. C, 2021, 125(28): 15185
CrossRef ADS Google scholar
[31]
A. Bafekry, C. Stampfl, M. Naseri, M. M. Fadlallah, M. Faraji, M. Ghergherehchi, D. Gogova, S. A. H. Feghhi. Effect of electric field and vertical strain on the electro−optical properties of the MoSi2N4 bilayer: A first-principles calculation. J. Appl. Phys., 2021, 129(15): 155103
CrossRef ADS Google scholar
[32]
L. Cao, G. Zhou, Q. Wang, L. K. Ang, Y. S. Ang. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett., 2021, 118(1): 013106
CrossRef ADS Google scholar
[33]
J. Zhao, X. H. Jin, H. Zeng, C. Yao, G. Yan. Spin-valley coupling and valley splitting in the MoSi2N4/CrCl3 van der Waals heterostructure. Appl. Phys. Lett., 2021, 119(21): 213101
CrossRef ADS Google scholar
[34]
Y. Ding, Y. Wang. First-principles study of two-dimensional MoN2X2Y2 (X = B~In, Y = N~Te) nanosheets: The III–VI analogues of MoSi2N4 with peculiar electronic and magnetic properties. Appl. Surf. Sci., 2022, 593: 153317
CrossRef ADS Google scholar
[35]
C. Nguyen, N. V. Hoang, H. V. Phuc, A. Y. Sin, C. V. Nguyen. Two-dimensional boron phosphide/MoGe2N4 van der Waals heterostructure: A promising tunable optoelectronic material. J. Phys. Chem. Lett., 2021, 12(21): 5076
CrossRef ADS Google scholar
[36]
Y. Guo, Y. Dong, X. Cai, L. Liu, Y. Jia. Controllable Schottky barriers and contact types of BN intercalation layers in graphene/MoSi2As4 vdW heterostructures via applying an external electrical field. Phys. Chem. Chem. Phys., 2022, 24(30): 18331
CrossRef ADS Google scholar
[37]
Z. Zhang, G. Chen, A. Song, X. Cai, W. Yu, X. Jia, Y. Jia. Optoelectronic properties of bilayer van der Waals WSe2/MoSi2N4 heterostructure: A first-principles study. Physica E, 2022, 144: 115429
CrossRef ADS Google scholar
[38]
C. Q. Nguyen, Y. S. Ang, S. T. Nguyen, N. V. Hoang, N. M. Hung, C. V. Nguyen. Tunable type-II band alignment and electronic structure of C3N4/MoSi2N4 heterostructure: Interlayer coupling and electric field. Phys. Rev. B, 2022, 105(4): 045303
CrossRef ADS Google scholar
[39]
Y. T. Ren, L. Hu, Y. T. Chen, Y. J. Hu, J. L. Wang, P. L. Gong, H. Zhang, L. Huang, X. Q. Shi. Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments. Phys. Rev. Mater., 2022, 6(6): 064006
CrossRef ADS Google scholar
[40]
X.CaiZhangZ. ZhuY.LinL.YuW.Wang Q.YangX. JiaX.JiaY., A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties, J. Mater. Chem. C 9(31), 10073 (2021)
[41]
A.BafekryM. FarajiA.Abdollahzadeh ZiabariM.M. FadlallahC.V. NguyenM.GhergherehchiS.A. H. Feghhi, A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study, New J. Chem. 45(18), 8291 (2021)
[42]
J. Q. Ng, Q. Wu, L. K. Ang, Y. S. Ang. Tunable electronic properties and band alignments of MoSi2N4/GaN and MoSi2N4/ZnO van der Waals heterostructures. Appl. Phys. Lett., 2022, 120(10): 103101
CrossRef ADS Google scholar
[43]
Y. Sozen, M. Yagmurcukardes, H. Sahin. Vibrational and optical identification of GeO2 and GeO single layers: A first-principles study. Phys. Chem. Chem. Phys., 2021, 23(37): 21307
CrossRef ADS Google scholar
[44]
S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, A. Javey. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett., 2014, 14(3): 1337
CrossRef ADS Google scholar
[45]
H. Kim, H. J. Choi. Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations. Phys. Rev. B, 2021, 103(8): 085404
CrossRef ADS Google scholar
[46]
B. Y. Zhang, K. Xu, Q. Yao, A. Jannat, G. Ren, M. R. Field, X. Wen, C. Zhou, A. Zavabeti, J. Z. Ou. Hexagonal metal oxide monolayers derived from the metal-gas interface. Nat. Mater., 2021, 20(8): 1073
CrossRef ADS Google scholar
[47]
G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[48]
J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[49]
J. Heyd, G. E. Scuseria, M. Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
CrossRef ADS Google scholar
[50]
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[51]
Y. Mogulkoc, R. Caglayan, Y. O. Ciftci. Band alignment in monolayer boron phosphide with Janus MoSSe heterobilayers under strain and electric field. Phys. Rev. Appl., 2021, 16(2): 024001
CrossRef ADS Google scholar
[52]
Y. L. Liu, Y. Shi, H. Yin, C. L. Yang. Two-dimensional BP/β-AsP van der Waals heterostructures as promising photocatalyst for water splitting. Appl. Phys. Lett., 2020, 117(6): 063901
CrossRef ADS Google scholar
[53]
S. Patel, U. Dey, N. P. Adhikari, A. Taraphder. Electric field and strain-induced band-gap engineering and manipulation of the Rashba spin splitting in Janus van der Waals heterostructures. Phys. Rev. B, 2022, 106(3): 035125
CrossRef ADS Google scholar
[54]
M. Yagmurcukardes, E. Torun, R. T. Senger, F. M. Peeters, H. Sahin. Mg(OH)2−WS2 van der Waals heterobilayer: Electric field tunable band-gap crossover. Phys. Rev. B, 2016, 94(19): 195403
CrossRef ADS Google scholar
[55]
K. Iordanidou, J. Wiktor. Two-dimensional MoTe2/SnSe2 van der Waals heterostructures for tunnel-FET applications. Phys. Rev. Mater., 2022, 6(8): 084001
CrossRef ADS Google scholar
[56]
K. Liang, T. Huang, K. Yang, Y. Si, H. Y. Wu, J. C. Lian, W. Q. Huang, W. Y. Hu, G. F. Huang. Dipole engineering of two-dimensional van der Waals heterostructures for enhanced power-conversion efficiency: The case of Janus Ga2SeTe/InS. Phys. Rev. Appl., 2021, 16(5): 054043
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1216-8 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1216-8 and are accessible for authorized users.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11904085 and 12074103. Program for Outstanding Youth of Henan Province under Grant No. 202300410221. Henan Normal University Innovative Science and Technology Team under Grant No. 20200185. The calculations were also supported by the High Performance Computing Center of Henan Normal University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3766 KB)

Accesses

Citations

Detail

Sections
Recommended

/