Dynamic polarization rotation and vector field steering based on phase change metasurface

Hairong He, Hui Yang, Zhenwei Xie, Xiaocong Yuan

PDF(4179 KB)
PDF(4179 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 12303. DOI: 10.1007/s11467-022-1214-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamic polarization rotation and vector field steering based on phase change metasurface

Author information +
History +

Abstract

Polarization rotation and vector field steering of electromagnetic wave are of great significance in modern optical applications. However, conventional polarization devices are bulky, monofunctional and lack of tunability, which pose great challenges to the miniaturized and multifunctional applications. Herein, we propose a meta-device that is capable of multi-state polarization rotation and vector field steering based on phase change metasurface. The supercell of the meta-device consists of four Ge2Sb2Te5 (GST) elliptic cylinders located on a SiO2 substrate. By independently controlling the phase state (amorphous or crystalline) of each GST elliptic cylinder, the meta-device can rotate the polarization plane of the linearly polarized incident light to different angles that cover from 19.8° to 154.9° at a wavelength of 1550 nm. Furthermore, by merely altering the phase transition state of GST elliptic cylinders, we successfully demonstrated a vector field steering by generating optical vortices carrying orbital angular momentums (OAMs) with topological charges of 0, 1 and −1, respectively. The proposed method provides a new platform for investigating dynamically tunable optical devices and has potential applications in many fields such as optical communications and information processing.

Graphical abstract

Keywords

polarization rotation / vector field steering / phase change metasurface

Cite this article

Download citation ▾
Hairong He, Hui Yang, Zhenwei Xie, Xiaocong Yuan. Dynamic polarization rotation and vector field steering based on phase change metasurface. Front. Phys., 2023, 18(1): 12303 https://doi.org/10.1007/s11467-022-1214-x

References

[1]
H. Rhee, Y. G. June, J. S. Lee, K. K. Lee, J. H. Ha, Z. H. Kim, S. J. Jeon, M. Cho. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature, 2009, 458(7236): 310
CrossRef ADS Google scholar
[2]
E. Bahar. Road maps for the use of Mueller matrix measurements to detect and identify biological and chemical materials through their optical activity: Potential applications in biomedicine, biochemistry, security, and industry. J. Opt. Soc. Am. B, 2009, 26(2): 364
CrossRef ADS Google scholar
[3]
Y. He, W. Bo, R. K. Dukor, L. A. Nafie. Determination of absolute configuration of chiral molecules using vibrational optical activity: A review. Appl. Spectrosc., 2011, 65(7): 699
CrossRef ADS Google scholar
[4]
Y.LianX. QiY.WangZ.BaiY.Wang Z.Lu, OAM beam generation in space and its applications: A review, Opt. Lasers Eng. 151, 106923 (2022)
[5]
E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3(6): 628
CrossRef ADS Google scholar
[6]
V. Sharma, M. Crne, J. O. Park, M. Srinivasarao. Structural origin of circularly polarized iridescence in jeweled beetles. Science, 2009, 325(5939): 449
CrossRef ADS Google scholar
[7]
F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, E. Santamato. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt., 2012, 51(10): C1
CrossRef ADS Google scholar
[8]
Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, R. R. Alfano. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt. Lett., 2013, 38(23): 5083
CrossRef ADS Google scholar
[9]
S.M. KamaliE. ArbabiA.ArbabiA.Faraon, A review of dielectric optical metasurfaces for wavefront control, Nanophotonics 7(6), 1041 (2018)
[10]
K. Ding, S. Y. Xiao, L. Zhou. New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces. Front. Phys., 2013, 8(4): 386
CrossRef ADS Google scholar
[11]
A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, F. Capasso. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 2021, 15(4): 287
CrossRef ADS Google scholar
[12]
Z. Y. Song, Q. Q. Chu, X. P. Shen, Q. H. Liu. Wideband high-efficient linear polarization rotators. Front. Phys., 2018, 13(5): 137803
CrossRef ADS Google scholar
[13]
D. Wen, J. J. Cadusch, J. Meng, K. B. Crozier. Light field on a chip: Metasurface-based multicolor holograms. Adv. Photonics, 2021, 3(2): 024001
CrossRef ADS Google scholar
[14]
M. K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, D. P. Tsai. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater., 2021, 9(4): 2001414
CrossRef ADS Google scholar
[15]
H. Yang, Z. Xie, G. Li, K. Ou, F. Yu, H. He, H. Wang, X. Yuan. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere. Photon. Res., 2021, 9(3): 331
CrossRef ADS Google scholar
[16]
Z. Li, X. Cai, L. Huang, H. Xu, Y. Wei, N. Dai. Controllable polarization rotator with broadband high transmission using all-dielectric metasurfaces. Adv. Theory Simul., 2019, 2(9): 1900086
CrossRef ADS Google scholar
[17]
D. Wen, F. Yue, C. Zhang, X. Zang, H. Liu, W. Wang, X. Chen. Plasmonic metasurface for optical rotation. Appl. Phys. Lett., 2017, 111(2): 023102
CrossRef ADS Google scholar
[18]
M. A. Cole, W. C. Chen, M. Liu, S. S. Kruk, W. J. Padilla, I. V. Shadrivov, D. A. Powell. Strong broadband terahertz optical activity through control of the Blaschke phase with chiral metasurfaces. Phys. Rev. A, 2017, 8(1): 014019
[19]
M. Al-Mahmoud, V. Coda, A. Rangelov, G. Montemezzani. Broadband polarization rotator with tunable rotation angle composed of three wave plates. Phys. Rev. A, 2020, 13(1): 014048
[20]
H. Ahmed, H. Kim, Y. Zhang, Y. Intaravanne, J. Jang, J. Rho, S. Chen, X. Chen. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 2022, 11(5): 941
CrossRef ADS Google scholar
[21]
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, J. Hu. Myths and truths about optical phase change materials: A perspective. Appl. Phys. Lett., 2021, 118(21): 210501
CrossRef ADS Google scholar
[22]
F. Ding, Y. Yang, S. I. Bozhevolnyi. Dynamic metasurfaces using phase‐change chalcogenides. Adv. Opt. Mater., 2019, 7(14): 1801709
CrossRef ADS Google scholar
[23]
I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, A. Dmitriev. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett., 2018, 18(1): 302
CrossRef ADS Google scholar
[24]
H. S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 2016, 16(4): 2818
CrossRef ADS Google scholar
[25]
J. Kalikka, J. Akola, R. O. Jones. Simulation of crystallization in Ge2Sb2Te5: A memory effect in the canonical phase-change material. Phys. Rev. B, 2014, 90(18): 184109
CrossRef ADS Google scholar
[26]
D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, S. R. Elliott. Breaking the speed limits of phase-change memory. Science, 2012, 336(6088): 1566
CrossRef ADS Google scholar
[27]
M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 2017, 11(8): 465
CrossRef ADS Google scholar
[28]
J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, S. I. Bozhevolnyi. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 2019, 10(1): 396
CrossRef ADS Google scholar
[29]
C. Choi, S. Y. Lee, S. E. Mun, G. Y. Lee, J. Sung, H. Yun, J. H. Yang, H. O. Kim, C. Y. Hwang, B. Lee. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch. Adv. Opt. Mater., 2019, 7(12): 1900171
CrossRef ADS Google scholar
[30]
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, A. Adibi. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 2020, 9(5): 1189
CrossRef ADS Google scholar
[31]
M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. (Weinh. ), 2018, 5(10): 1800835
CrossRef ADS Google scholar
[32]
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, H. Giessen. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl., 2017, 6(7): e17016
CrossRef ADS Google scholar
[33]
B. Fang, D. Feng, P. Chen, L. Shi, J. Cai, J. Li, C. Li, Z. Hong, X. Jing. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502
CrossRef ADS Google scholar
[34]
B.J. ThompsonD.GoldsteinD.H. Goldstein, Polarized Light, Revised and Expanded, 2nd Ed., 42–43, CRC Press, 2003
[35]
L.CongW. CaoX.ZhangZ.TianJ.Gu R.SinghJ. HanW.Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)
[36]
J. Chen, C. Wan, Q. Zhan. Engineering photonic angular momentum with structured light: A review. Adv. Photonics, 2021, 3(6): 064001
CrossRef ADS Google scholar
[37]
Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
CrossRef ADS Google scholar
[38]
D. Naidoo, K. Aït-Ameur, M. Brunel, A. Forbes. Intra-cavity generation of superpositions of Laguerre-Gaussian beams. Appl. Phys. B, 2012, 106(3): 683
CrossRef ADS Google scholar
[39]
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills. Artificial neural network discovery of a switchable metasurface reflector. Opt. Express, 2020, 28(17): 24629
CrossRef ADS Google scholar
[40]
N. Fleurence, B. Hay, G. Davée, A. Cappella, E. Foulon. Thermal conductivity measurements of thin films at high temperature modulated photothermal radiometry at LNE. Phys. Status Solidi. A, 2015, 212(3): 535
CrossRef ADS Google scholar
[41]
S. C. Agarwal. Role of potential fluctuations in phase-change GST memory devices. Phys. Status Solidi B, 2012, 249(10): 1956
CrossRef ADS Google scholar
[42]
S. W. Ryu, J. H. Oh, J. H. Lee, B. J. Choi, W. Kim, S. K. Hong, C. S. Hwang, H. J. Kim. Phase transformation behaviors of SiO2 doped Ge2Sb2Te5 films for application in phase change random access memory. Appl. Phys. Lett., 2008, 92(14): 142110
CrossRef ADS Google scholar
[43]
C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, D. P. Tsai. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 2016, 10(6): 986
CrossRef ADS Google scholar
[44]
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, N. I. Zheludev. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 2016, 10(1): 60
CrossRef ADS Google scholar
[45]
R. Pandian, B. J. Kooi, G. Palasantzas, J. T. M. De Hosson, A. Pauza. Nanoscale electrolytic switching in phase-change chalcogenide films. Adv. Mater., 2007, 19(24): 4431
CrossRef ADS Google scholar
[46]
W. Zhang, R. Mazzarello, M. Wuttig, E. Ma. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater., 2019, 4(3): 150
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1214-x and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1214-x and are accessible for authorized users.

Author contributions

H.H. designed and simulated the structure. The project was conceived and supervised by Z.X. and X.Y.. All authors analyzed and discussed the results and approved it for publication.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but can be obtained from the authors upon reasonable request.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Acknowledgements

We are grateful for financial supports from the Guangdong Major Project of Basic Research (Grant No. 2020B0301030009), the National Key R&D Program of China (Grant No. 2018YFB1801801), the National Natural Science Foundation of China (Grant Nos. 61935013, 61975133, 11947017, and 12104318), the Natural Science Foundation of Guangdong Province (Grant No. 2020A1515011185), the Science and Technology Innovation Commission of Shenzhen (Grant Nos. KQTD20170330110444030, JCYJ2018 0507182035270, and JCYJ20200109114018750), Shenzhen University (Grant No. 2019075), and China Postdoctoral Science Foundation (Grant No. 2021T140470).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4179 KB)

Accesses

Citations

Detail

Sections
Recommended

/