Dynamic polarization rotation and vector field steering based on phase change metasurface
Hairong He, Hui Yang, Zhenwei Xie, Xiaocong Yuan
Dynamic polarization rotation and vector field steering based on phase change metasurface
Polarization rotation and vector field steering of electromagnetic wave are of great significance in modern optical applications. However, conventional polarization devices are bulky, monofunctional and lack of tunability, which pose great challenges to the miniaturized and multifunctional applications. Herein, we propose a meta-device that is capable of multi-state polarization rotation and vector field steering based on phase change metasurface. The supercell of the meta-device consists of four Ge2Sb2Te5 (GST) elliptic cylinders located on a SiO2 substrate. By independently controlling the phase state (amorphous or crystalline) of each GST elliptic cylinder, the meta-device can rotate the polarization plane of the linearly polarized incident light to different angles that cover from 19.8° to 154.9° at a wavelength of 1550 nm. Furthermore, by merely altering the phase transition state of GST elliptic cylinders, we successfully demonstrated a vector field steering by generating optical vortices carrying orbital angular momentums (OAMs) with topological charges of 0, 1 and −1, respectively. The proposed method provides a new platform for investigating dynamically tunable optical devices and has potential applications in many fields such as optical communications and information processing.
polarization rotation / vector field steering / phase change metasurface
[1] |
H. Rhee, Y. G. June, J. S. Lee, K. K. Lee, J. H. Ha, Z. H. Kim, S. J. Jeon, M. Cho. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature, 2009, 458(7236): 310
CrossRef
ADS
Google scholar
|
[2] |
E. Bahar. Road maps for the use of Mueller matrix measurements to detect and identify biological and chemical materials through their optical activity: Potential applications in biomedicine, biochemistry, security, and industry. J. Opt. Soc. Am. B, 2009, 26(2): 364
CrossRef
ADS
Google scholar
|
[3] |
Y. He, W. Bo, R. K. Dukor, L. A. Nafie. Determination of absolute configuration of chiral molecules using vibrational optical activity: A review. Appl. Spectrosc., 2011, 65(7): 699
CrossRef
ADS
Google scholar
|
[4] |
Y.LianX. QiY.WangZ.BaiY.Wang Z.Lu, OAM beam generation in space and its applications: A review, Opt. Lasers Eng. 151, 106923 (2022)
|
[5] |
E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3(6): 628
CrossRef
ADS
Google scholar
|
[6] |
V. Sharma, M. Crne, J. O. Park, M. Srinivasarao. Structural origin of circularly polarized iridescence in jeweled beetles. Science, 2009, 325(5939): 449
CrossRef
ADS
Google scholar
|
[7] |
F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, E. Santamato. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt., 2012, 51(10): C1
CrossRef
ADS
Google scholar
|
[8] |
Y. S. Rumala, G. Milione, T. A. Nguyen, S. Pratavieira, Z. Hossain, D. Nolan, S. Slussarenko, E. Karimi, L. Marrucci, R. R. Alfano. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt. Lett., 2013, 38(23): 5083
CrossRef
ADS
Google scholar
|
[9] |
S.M. KamaliE. ArbabiA.ArbabiA.Faraon, A review of dielectric optical metasurfaces for wavefront control, Nanophotonics 7(6), 1041 (2018)
|
[10] |
K. Ding, S. Y. Xiao, L. Zhou. New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces. Front. Phys., 2013, 8(4): 386
CrossRef
ADS
Google scholar
|
[11] |
A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, F. Capasso. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 2021, 15(4): 287
CrossRef
ADS
Google scholar
|
[12] |
Z. Y. Song, Q. Q. Chu, X. P. Shen, Q. H. Liu. Wideband high-efficient linear polarization rotators. Front. Phys., 2018, 13(5): 137803
CrossRef
ADS
Google scholar
|
[13] |
D. Wen, J. J. Cadusch, J. Meng, K. B. Crozier. Light field on a chip: Metasurface-based multicolor holograms. Adv. Photonics, 2021, 3(2): 024001
CrossRef
ADS
Google scholar
|
[14] |
M. K. Chen, Y. Wu, L. Feng, Q. Fan, M. Lu, T. Xu, D. P. Tsai. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater., 2021, 9(4): 2001414
CrossRef
ADS
Google scholar
|
[15] |
H. Yang, Z. Xie, G. Li, K. Ou, F. Yu, H. He, H. Wang, X. Yuan. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere. Photon. Res., 2021, 9(3): 331
CrossRef
ADS
Google scholar
|
[16] |
Z. Li, X. Cai, L. Huang, H. Xu, Y. Wei, N. Dai. Controllable polarization rotator with broadband high transmission using all-dielectric metasurfaces. Adv. Theory Simul., 2019, 2(9): 1900086
CrossRef
ADS
Google scholar
|
[17] |
D. Wen, F. Yue, C. Zhang, X. Zang, H. Liu, W. Wang, X. Chen. Plasmonic metasurface for optical rotation. Appl. Phys. Lett., 2017, 111(2): 023102
CrossRef
ADS
Google scholar
|
[18] |
M. A. Cole, W. C. Chen, M. Liu, S. S. Kruk, W. J. Padilla, I. V. Shadrivov, D. A. Powell. Strong broadband terahertz optical activity through control of the Blaschke phase with chiral metasurfaces. Phys. Rev. A, 2017, 8(1): 014019
|
[19] |
M. Al-Mahmoud, V. Coda, A. Rangelov, G. Montemezzani. Broadband polarization rotator with tunable rotation angle composed of three wave plates. Phys. Rev. A, 2020, 13(1): 014048
|
[20] |
H. Ahmed, H. Kim, Y. Zhang, Y. Intaravanne, J. Jang, J. Rho, S. Chen, X. Chen. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 2022, 11(5): 941
CrossRef
ADS
Google scholar
|
[21] |
Y. Zhang, C. Ríos, M. Y. Shalaginov, M. Li, A. Majumdar, T. Gu, J. Hu. Myths and truths about optical phase change materials: A perspective. Appl. Phys. Lett., 2021, 118(21): 210501
CrossRef
ADS
Google scholar
|
[22] |
F. Ding, Y. Yang, S. I. Bozhevolnyi. Dynamic metasurfaces using phase‐change chalcogenides. Adv. Opt. Mater., 2019, 7(14): 1801709
CrossRef
ADS
Google scholar
|
[23] |
I. Zubritskaya, N. Maccaferri, X. Inchausti Ezeiza, P. Vavassori, A. Dmitriev. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett., 2018, 18(1): 302
CrossRef
ADS
Google scholar
|
[24] |
H. S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 2016, 16(4): 2818
CrossRef
ADS
Google scholar
|
[25] |
J. Kalikka, J. Akola, R. O. Jones. Simulation of crystallization in Ge2Sb2Te5: A memory effect in the canonical phase-change material. Phys. Rev. B, 2014, 90(18): 184109
CrossRef
ADS
Google scholar
|
[26] |
D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, S. R. Elliott. Breaking the speed limits of phase-change memory. Science, 2012, 336(6088): 1566
CrossRef
ADS
Google scholar
|
[27] |
M. Wuttig, H. Bhaskaran, T. Taubner. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 2017, 11(8): 465
CrossRef
ADS
Google scholar
|
[28] |
J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, S. I. Bozhevolnyi. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 2019, 10(1): 396
CrossRef
ADS
Google scholar
|
[29] |
C. Choi, S. Y. Lee, S. E. Mun, G. Y. Lee, J. Sung, H. Yun, J. H. Yang, H. O. Kim, C. Y. Hwang, B. Lee. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch. Adv. Opt. Mater., 2019, 7(12): 1900171
CrossRef
ADS
Google scholar
|
[30] |
S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alù, A. Adibi. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 2020, 9(5): 1189
CrossRef
ADS
Google scholar
|
[31] |
M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. (Weinh. ), 2018, 5(10): 1800835
CrossRef
ADS
Google scholar
|
[32] |
X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, H. Giessen. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl., 2017, 6(7): e17016
CrossRef
ADS
Google scholar
|
[33] |
B. Fang, D. Feng, P. Chen, L. Shi, J. Cai, J. Li, C. Li, Z. Hong, X. Jing. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502
CrossRef
ADS
Google scholar
|
[34] |
B.J. ThompsonD.GoldsteinD.H. Goldstein, Polarized Light, Revised and Expanded, 2nd Ed., 42–43, CRC Press, 2003
|
[35] |
L.CongW. CaoX.ZhangZ.TianJ.Gu R.SinghJ. HanW.Zhang, A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)
|
[36] |
J. Chen, C. Wan, Q. Zhan. Engineering photonic angular momentum with structured light: A review. Adv. Photonics, 2021, 3(6): 064001
CrossRef
ADS
Google scholar
|
[37] |
Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
CrossRef
ADS
Google scholar
|
[38] |
D. Naidoo, K. Aït-Ameur, M. Brunel, A. Forbes. Intra-cavity generation of superpositions of Laguerre-Gaussian beams. Appl. Phys. B, 2012, 106(3): 683
CrossRef
ADS
Google scholar
|
[39] |
J. R. Thompson, J. A. Burrow, P. J. Shah, J. Slagle, E. S. Harper, A. Van Rynbach, I. Agha, M. S. Mills. Artificial neural network discovery of a switchable metasurface reflector. Opt. Express, 2020, 28(17): 24629
CrossRef
ADS
Google scholar
|
[40] |
N. Fleurence, B. Hay, G. Davée, A. Cappella, E. Foulon. Thermal conductivity measurements of thin films at high temperature modulated photothermal radiometry at LNE. Phys. Status Solidi. A, 2015, 212(3): 535
CrossRef
ADS
Google scholar
|
[41] |
S. C. Agarwal. Role of potential fluctuations in phase-change GST memory devices. Phys. Status Solidi B, 2012, 249(10): 1956
CrossRef
ADS
Google scholar
|
[42] |
S. W. Ryu, J. H. Oh, J. H. Lee, B. J. Choi, W. Kim, S. K. Hong, C. S. Hwang, H. J. Kim. Phase transformation behaviors of SiO2 doped Ge2Sb2Te5 films for application in phase change random access memory. Appl. Phys. Lett., 2008, 92(14): 142110
CrossRef
ADS
Google scholar
|
[43] |
C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, D. P. Tsai. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 2016, 10(6): 986
CrossRef
ADS
Google scholar
|
[44] |
Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, N. I. Zheludev. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 2016, 10(1): 60
CrossRef
ADS
Google scholar
|
[45] |
R. Pandian, B. J. Kooi, G. Palasantzas, J. T. M. De Hosson, A. Pauza. Nanoscale electrolytic switching in phase-change chalcogenide films. Adv. Mater., 2007, 19(24): 4431
CrossRef
ADS
Google scholar
|
[46] |
W. Zhang, R. Mazzarello, M. Wuttig, E. Ma. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater., 2019, 4(3): 150
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |