Electronic properties of monolayer copper selenide with one-dimensional moiré patterns

Gefei Niu, Jianchen Lu, Jianqun Geng, Shicheng Li, Hui Zhang, Wei Xiong, Zilin Ruan, Yong Zhang, Boyu Fu, Lei Gao, Jinming Cai

PDF(3637 KB)
PDF(3637 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13303. DOI: 10.1007/s11467-022-1211-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic properties of monolayer copper selenide with one-dimensional moiré patterns

Author information +
History +

Abstract

Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moiré patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moiré patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.

Graphical abstract

Keywords

CuSe monolayer / scanning tunneling microscopy / strain / electronic bandgap / electronic property

Cite this article

Download citation ▾
Gefei Niu, Jianchen Lu, Jianqun Geng, Shicheng Li, Hui Zhang, Wei Xiong, Zilin Ruan, Yong Zhang, Boyu Fu, Lei Gao, Jinming Cai. Electronic properties of monolayer copper selenide with one-dimensional moiré patterns. Front. Phys., 2023, 18(1): 13303 https://doi.org/10.1007/s11467-022-1211-0

References

[1]
K. F. Mak , K. L. McGill , J. Park , P. L. McEuen . The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
CrossRef ADS Google scholar
[2]
N. Mounet , M. Gibertini , P. Schwaller , D. Campi , A. Merkys , A. Marrazzo , T. Sohier , I. E. Castelli , A. Cepellotti , G. Pizzi , N. Marzari . Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol., 2018, 13(3): 246
CrossRef ADS Google scholar
[3]
S. Y. Zhu , Y. Shao , E. Wang , L. Cao , X. Y. Li , Z. L. Liu , C. Liu , L. W. Liu , J. O. Wang , K. Ibrahim , J. T. Sun , Y. L. Wang , S. Du , H. J. Gao . Evidence of topological edge states in buckled antimonene monolayers. Nano Lett., 2019, 19(9): 6323
CrossRef ADS Google scholar
[4]
Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef ADS Google scholar
[5]
Y. H. Mao , H. Shan , J. R. Wu , Z. J. Li , C. Z. Wu , X. F. Zhai , A. D. Zhao , B. Wang . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
CrossRef ADS Google scholar
[6]
J. X. Lin , Y. H. Zhang , E. Morissette , Z. Wang , S. Liu , D. Rhodes , K. Watanabe , T. Taniguchi , J. Hone , J. Li . Spin−orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science, 2022, 375(6579): 437
CrossRef ADS Google scholar
[7]
X. Y. Wang , H. Zhang , Z. L. Ruan , Z. L. Hao , X. T. Yang , J. M. Cai , J. C. Lu . Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta. Phys. Sin., 2020, 69(11): 118101
CrossRef ADS Google scholar
[8]
B. Liu , J. Liu , G. Miao , S. Xue , S. Zhang , L. Liu , X. Huang , X. Zhu , S. Meng , J. Guo , M. Liu , W. Wang . Flat AgTe honeycomb monolayer on Ag(111). J. Phys. Chem. Lett., 2019, 10(8): 1866
CrossRef ADS Google scholar
[9]
J. Shah , H. M. Sohail , R. I. G. Uhrberg , W. Wang . Two-dimensional binary honeycomb layer formed by Ag and Te on Ag(111). J. Phys. Chem. Lett., 2020, 11(5): 1609
CrossRef ADS Google scholar
[10]
M. Ünzelmann , H. Bentmann , P. Eck , T. Kißlinger , B. Geldiyev , J. Rieger , S. Moser , R. C. Vidal , K. Kißner , L. Hammer , M. A. Schneider , T. Fauster , G. Sangiovanni , D. Di Sante , F. Reinert . Orbital-driven Rashba effect in a binary honeycomb monolayer AgTe. Phys. Rev. Lett., 2020, 124(17): 176401
CrossRef ADS Google scholar
[11]
X. Lin , J. C. Lu , Y. Shao , Y. Y. Zhang , X. Wu , J. B. Pan , L. Gao , S. Y. Zhu , K. Qian , Y. F. Zhang , D. L. Bao , L. F. Li , Y. Q. Wang , Z. L. Liu , J. T. Sun , T. Lei , C. Liu , J. O. Wang , K. Ibrahim , D. N. Leonard , W. Zhou , H. M. Guo , Y. L. Wang , S. X. Du , S. T. Pantelides , H. J. Gao . Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater., 2017, 16(7): 717
CrossRef ADS Google scholar
[12]
L. Gao , J. T. Sun , J. C. Lu , H. Li , K. Qian , S. Zhang , Y. Y. Zhang , T. Qian , H. Ding , X. Lin , S. Du , H. J. Gao . Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions. Adv. Mater., 2018, 30(16): 1707055
CrossRef ADS Google scholar
[13]
J. Lu , L. Gao , S. Song , H. Li , G. Niu , H. Chen , T. Qian , H. Ding , X. Lin , S. Du , H. J. Gao . Honeycomb AgSe monolayer nanosheets for studying two-dimensional Dirac nodal line fermions. ACS Appl. Nano Mater., 2021, 4(9): 8845
CrossRef ADS Google scholar
[14]
X. Wang , Z. Ruan , R. Du , H. Zhang , X. Yang , G. Niu , J. Cai , J. Lu . Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. J. Mater. Sci., 2021, 56(17): 10406
CrossRef ADS Google scholar
[15]
L. Gao , Y. F. Zhang , J. T. Sun , S. Du . Band engineering of honeycomb monolayer CuSe via atomic modification. Chin. Phys. B, 2021, 30(10): 106807
CrossRef ADS Google scholar
[16]
G. Niu , J. Lu , X. Wang , Z Ruan , H. Zhang , L. Gao , J. Cai , X. Lin . Se-concentration dependent superstructure transformations of CuSe monolayer on Cu(111) substrate. 2D Mater., 2022, 9(1): 015017
CrossRef ADS Google scholar
[17]
Z. Song , J. Huang , S. Zhang , Y. Cao , C. Liu , R. Zhang , Q. Zheng , L. Cao , L. Huang , J. Wang , T. Qian , H. Ding , W. Zhou , Y. Y. Zhang , H. Lu , C. Shen , X. Lin , S. Du , H. J. Gao . Observation of an incommensurate charge density wave in monolayer TiSe2/CuSe/Cu(111) heterostructure. Phys. Rev. Lett., 2022, 128(2): 026401
CrossRef ADS Google scholar
[18]
K. Tang , W. Qi . Moiré-pattern-tuned electronic structures of van Der Waals heterostructures. Adv. Funct. Mater., 2020, 30(32): 2002672
CrossRef ADS Google scholar
[19]
J. Kang , J. Li , S. S. Li , J. B. Xia , L. W. Wang . Electronic structural moire pattern effects on MoS2/MoSe2 2d heterostructures. Nano Lett., 2013, 13(11): 5485
CrossRef ADS Google scholar
[20]
K. L. Seyler , P. Rivera , H. Yu , N. P. Wilson , E. L. Ray , D. G. Mandrus , J. Yan , W. Yao , X. Xu . Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
CrossRef ADS Google scholar
[21]
C. Zhang , M. Y. Li , J. Tersoff , Y. Han , Y. Su , L. J. Li , D. A. Muller , C. K. Shih . Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol., 2018, 13(2): 152
CrossRef ADS Google scholar
[22]
Y. Pan , H. Zhang , D. Shi , J. Sun , S. Du , F. Liu , H. Gao . Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater., 2009, 21(27): 2777
CrossRef ADS Google scholar
[23]
Y. S. Bai , L. Zhou , J. Wang , W. J. Wu , L. J. McGilly , D. Halbertal , C. F. B. Lo , F. Liu , J. Ardelean , P. Rivera , N. R. Finney , X. C. Yang , D. N. Basov , W. Yao , X. Xu , J. Hone , A. N. Pasupathy , X. Y. Zhu . Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater., 2020, 19(10): 1068
CrossRef ADS Google scholar
[24]
Q. J. Tong , H. Y. Yu , Q. Z. Zhu , Y. Wang , X. D. Xu , A. Yao . Topological mosaics in moire superlattices of van Der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
CrossRef ADS Google scholar
[25]
I. Horcas , R. Fernandez , J. M. Gomez-Rodriguez , J. Colchero , J. Gomez-Herrero , A. M. Baro . WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum., 2007, 78(1): 013705
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1211-0 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1211-0 and are accessible for authorized users.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62271238 and 61901200), the Yunnan Fundamental Research Projects (Nos. 202201AT070078, 202101AV070008, 202101AW070010, and 202101AU070043), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000), the Analysis and Testing Foundation of KUST (2021T20170056), and the Dongguan Innovation Research Team Program. Numerical computations were performed on Hefei advanced computing center.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3637 KB)

Accesses

Citations

Detail

Sections
Recommended

/