
Electronic properties of monolayer copper selenide with one-dimensional moiré patterns
Gefei Niu, Jianchen Lu, Jianqun Geng, Shicheng Li, Hui Zhang, Wei Xiong, Zilin Ruan, Yong Zhang, Boyu Fu, Lei Gao, Jinming Cai
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13303.
Electronic properties of monolayer copper selenide with one-dimensional moiré patterns
Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moiré patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moiré patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.
CuSe monolayer / scanning tunneling microscopy / strain / electronic bandgap / electronic property
Fig.1 Electronic properties of CuSe monolayer with 1D moiré patterns. (a) An atomically resolved STM image of 1D moiré patterns CuSe monolayer with hexagonal honeycomb lattice. (b) Three dI/dV curves collected at different positions which are marked by blue, green and red dots in (a). (c) A corresponding dI/dV map obtained at the energy of −0.66 V. Red, blue and green dashed lines in (a) and (c) indicate three different regions in 1D moiré patterns. (d) Zoom-in dI/dV curves from a gray square in (b). Two black triangles represent a peak at −0.66 V. Scanning parameters: (a) Vs = −0.42 V, It = 300 pA; (b) Vs = 1.5 V, It = 400 pA, Vrms = 10 mV; (c) Vs = −0.66 V, It = 300 pA. |
Fig.2 Atomic structures and electronic properties of domain boundary of CuSe monolayer on Cu(111) substrate. (a) A high resolution STM image of the domain boundary. (b) dI/dV curves collected at three positions, as indicated by colored dots in (a). Black dashed lines indicate the positions of C1 peak in the conduction band. (c, f) STM image and corresponding dI/dV map at the energy of 0.92 V. (d) Three line-profiles at the domain boundary across the red, green, and yellow lines in (a). (e) Waterfall plots of dI/dV curves along a blue arrow in (a). A black curved dashed line indicates the C1 peak movement. Scanning parameters: (a) Vs = 50 mV, It = 1.3 nA; (b) Vs = 2 V, It = 300 pA, Vrms = 10 mV; (c) Vs = 0.92 V, It = 300 pA; (e) Vs = 2 V, It = 300 pA, Vrms = 10 mV; (f) Vs = 0.92 mV, It = 300 pA, Vrms = 10 mV. |
Fig.3 Line defects in the CuSe monolayer on the Cu(111) substrate. (a, b) A large-scale STM image and corresponding high-resolution STM image of the folding line-defect. (c, d) A large-scale STM image and corresponding high-resolution STM image of the straight line-defect. Atomic models are covered into (b) and (d) to shed light on the edge termations. (e) Schematic description of straight line-defect in CuSe atomic model, where blue and yellwo triangles indicate that the left and right modles are two mirror-symmetric domains. (f) dI/dV curves taken at three positions, as marked by black, red and blue stars in (a). Scanning parameters: (a) Vs = 0.4 V, It = 200 pA; (b) Vs = 2 V, It = 300 pA; (c) Vs = 0.2 V, It = 100 pA; (d) Vs = 0.2 V, It = 100 pA; (f) Vs = 2 V, It = 400 pA, Vrms = 10 mV. |
Fig.4 Atomic configurations and calculated electronic structures of CuSe monolayer. (a−c) Atomic configurations of CuSe monolayer under strain-free, 7.3% uniaxial-strain and 7.3% biaxial-strain, respectively. The primitive cell of CuSe monolayer is denoted by the black dotted line. (d−f) DOSs of CuSe monolayer under strain-free, 7.3% uniaxial-strain and 7.3% biaxial-strain, respectively. (g) CBM, VBM and Fermi level variations under uniaxial-strain and biaxial-strain of CuSe monolayer. (h−j) Cross sections of differential charge density (e/Bohr3) of CuSe monolayer under strain-free, 7.3% uniaxial-strain and 7.3% biaxial-strain, respectively. |
[1] |
K. F. Mak , K. L. McGill , J. Park , P. L. McEuen . The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
CrossRef
ADS
Google scholar
|
[2] |
N. Mounet , M. Gibertini , P. Schwaller , D. Campi , A. Merkys , A. Marrazzo , T. Sohier , I. E. Castelli , A. Cepellotti , G. Pizzi , N. Marzari . Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol., 2018, 13(3): 246
CrossRef
ADS
Google scholar
|
[3] |
S. Y. Zhu , Y. Shao , E. Wang , L. Cao , X. Y. Li , Z. L. Liu , C. Liu , L. W. Liu , J. O. Wang , K. Ibrahim , J. T. Sun , Y. L. Wang , S. Du , H. J. Gao . Evidence of topological edge states in buckled antimonene monolayers. Nano Lett., 2019, 19(9): 6323
CrossRef
ADS
Google scholar
|
[4] |
Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef
ADS
Google scholar
|
[5] |
Y. H. Mao , H. Shan , J. R. Wu , Z. J. Li , C. Z. Wu , X. F. Zhai , A. D. Zhao , B. Wang . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
CrossRef
ADS
Google scholar
|
[6] |
J. X. Lin , Y. H. Zhang , E. Morissette , Z. Wang , S. Liu , D. Rhodes , K. Watanabe , T. Taniguchi , J. Hone , J. Li . Spin−orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science, 2022, 375(6579): 437
CrossRef
ADS
Google scholar
|
[7] |
X. Y. Wang , H. Zhang , Z. L. Ruan , Z. L. Hao , X. T. Yang , J. M. Cai , J. C. Lu . Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta. Phys. Sin., 2020, 69(11): 118101
CrossRef
ADS
Google scholar
|
[8] |
B. Liu , J. Liu , G. Miao , S. Xue , S. Zhang , L. Liu , X. Huang , X. Zhu , S. Meng , J. Guo , M. Liu , W. Wang . Flat AgTe honeycomb monolayer on Ag(111). J. Phys. Chem. Lett., 2019, 10(8): 1866
CrossRef
ADS
Google scholar
|
[9] |
J. Shah , H. M. Sohail , R. I. G. Uhrberg , W. Wang . Two-dimensional binary honeycomb layer formed by Ag and Te on Ag(111). J. Phys. Chem. Lett., 2020, 11(5): 1609
CrossRef
ADS
Google scholar
|
[10] |
M. Ünzelmann , H. Bentmann , P. Eck , T. Kißlinger , B. Geldiyev , J. Rieger , S. Moser , R. C. Vidal , K. Kißner , L. Hammer , M. A. Schneider , T. Fauster , G. Sangiovanni , D. Di Sante , F. Reinert . Orbital-driven Rashba effect in a binary honeycomb monolayer AgTe. Phys. Rev. Lett., 2020, 124(17): 176401
CrossRef
ADS
Google scholar
|
[11] |
X. Lin , J. C. Lu , Y. Shao , Y. Y. Zhang , X. Wu , J. B. Pan , L. Gao , S. Y. Zhu , K. Qian , Y. F. Zhang , D. L. Bao , L. F. Li , Y. Q. Wang , Z. L. Liu , J. T. Sun , T. Lei , C. Liu , J. O. Wang , K. Ibrahim , D. N. Leonard , W. Zhou , H. M. Guo , Y. L. Wang , S. X. Du , S. T. Pantelides , H. J. Gao . Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater., 2017, 16(7): 717
CrossRef
ADS
Google scholar
|
[12] |
L. Gao , J. T. Sun , J. C. Lu , H. Li , K. Qian , S. Zhang , Y. Y. Zhang , T. Qian , H. Ding , X. Lin , S. Du , H. J. Gao . Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions. Adv. Mater., 2018, 30(16): 1707055
CrossRef
ADS
Google scholar
|
[13] |
J. Lu , L. Gao , S. Song , H. Li , G. Niu , H. Chen , T. Qian , H. Ding , X. Lin , S. Du , H. J. Gao . Honeycomb AgSe monolayer nanosheets for studying two-dimensional Dirac nodal line fermions. ACS Appl. Nano Mater., 2021, 4(9): 8845
CrossRef
ADS
Google scholar
|
[14] |
X. Wang , Z. Ruan , R. Du , H. Zhang , X. Yang , G. Niu , J. Cai , J. Lu . Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. J. Mater. Sci., 2021, 56(17): 10406
CrossRef
ADS
Google scholar
|
[15] |
L. Gao , Y. F. Zhang , J. T. Sun , S. Du . Band engineering of honeycomb monolayer CuSe via atomic modification. Chin. Phys. B, 2021, 30(10): 106807
CrossRef
ADS
Google scholar
|
[16] |
G. Niu , J. Lu , X. Wang , Z Ruan , H. Zhang , L. Gao , J. Cai , X. Lin . Se-concentration dependent superstructure transformations of CuSe monolayer on Cu(111) substrate. 2D Mater., 2022, 9(1): 015017
CrossRef
ADS
Google scholar
|
[17] |
Z. Song , J. Huang , S. Zhang , Y. Cao , C. Liu , R. Zhang , Q. Zheng , L. Cao , L. Huang , J. Wang , T. Qian , H. Ding , W. Zhou , Y. Y. Zhang , H. Lu , C. Shen , X. Lin , S. Du , H. J. Gao . Observation of an incommensurate charge density wave in monolayer TiSe2/CuSe/Cu(111) heterostructure. Phys. Rev. Lett., 2022, 128(2): 026401
CrossRef
ADS
Google scholar
|
[18] |
K. Tang , W. Qi . Moiré-pattern-tuned electronic structures of van Der Waals heterostructures. Adv. Funct. Mater., 2020, 30(32): 2002672
CrossRef
ADS
Google scholar
|
[19] |
J. Kang , J. Li , S. S. Li , J. B. Xia , L. W. Wang . Electronic structural moire pattern effects on MoS2/MoSe2 2d heterostructures. Nano Lett., 2013, 13(11): 5485
CrossRef
ADS
Google scholar
|
[20] |
K. L. Seyler , P. Rivera , H. Yu , N. P. Wilson , E. L. Ray , D. G. Mandrus , J. Yan , W. Yao , X. Xu . Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
CrossRef
ADS
Google scholar
|
[21] |
C. Zhang , M. Y. Li , J. Tersoff , Y. Han , Y. Su , L. J. Li , D. A. Muller , C. K. Shih . Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol., 2018, 13(2): 152
CrossRef
ADS
Google scholar
|
[22] |
Y. Pan , H. Zhang , D. Shi , J. Sun , S. Du , F. Liu , H. Gao . Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater., 2009, 21(27): 2777
CrossRef
ADS
Google scholar
|
[23] |
Y. S. Bai , L. Zhou , J. Wang , W. J. Wu , L. J. McGilly , D. Halbertal , C. F. B. Lo , F. Liu , J. Ardelean , P. Rivera , N. R. Finney , X. C. Yang , D. N. Basov , W. Yao , X. Xu , J. Hone , A. N. Pasupathy , X. Y. Zhu . Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater., 2020, 19(10): 1068
CrossRef
ADS
Google scholar
|
[24] |
Q. J. Tong , H. Y. Yu , Q. Z. Zhu , Y. Wang , X. D. Xu , A. Yao . Topological mosaics in moire superlattices of van Der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
CrossRef
ADS
Google scholar
|
[25] |
I. Horcas , R. Fernandez , J. M. Gomez-Rodriguez , J. Colchero , J. Gomez-Herrero , A. M. Baro . WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum., 2007, 78(1): 013705
CrossRef
ADS
Google scholar
|
Supplementary files
fop-21211-OF-lujianchen_suppl_1 (704 KB)
/
〈 |
|
〉 |