Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film

Hao Liu, Jiyu Fan, Huan Zheng, Jing Wang, Chunlan Ma, Haiyan Wang, Lei Zhang, Caixia Wang, Yan Zhu, Hao Yang

PDF(7213 KB)
PDF(7213 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 13302. DOI: 10.1007/s11467-022-1210-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film

Author information +
History +

Abstract

Quasi-2D layered Cr4Te5 thin film has attracted great attention because it possesses the high Curie temperature close to room temperature and relatively large saturation magnetization. However, the magnetic interactions and the nature of magnetic phase transition in the Cr4Te5 film have not been explored thoroughly. In this paper, we focused on the critical behavior of its magnetic phase transition through the epitaxial Cr4Te5 film fabricated by pulsed laser deposition (PLD). The final critical exponents β = 0.359(2) and γ = 1.54(2) were obtained by linear extrapolation together with Arrott-Noakes equation of state, and their accuracy was confirmed by using the Widom scaling relation and scaling hypothesis. We find that some magnetic disorders exist in the Cr4Te5 film system, which is related to Cr4Te5 critical behavior why its critical behavior is quite far from any conventional universality class. Furthermore, we also determined that the Cr4Te5 film exhibits a quasi-2D long-range magnetic interaction. Finally, the itinerant ferromagnets of Cr4Te5 films were confirmed by the Takahashi’s self-consistent renormalization theory of spin fluctuations. Our work provides a new idea for understanding the mechanism of magnetic interactions in similar 2D layered films.

Graphical abstract

Cite this article

Download citation ▾
Hao Liu, Jiyu Fan, Huan Zheng, Jing Wang, Chunlan Ma, Haiyan Wang, Lei Zhang, Caixia Wang, Yan Zhu, Hao Yang. Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film. Front. Phys., 2023, 18(1): 13302 https://doi.org/10.1007/s11467-022-1210-1

References

[1]
A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430: 870
CrossRef ADS Google scholar
[2]
Z.LinMcCrearyA.BriggsN.SubramanianS.H. ZhangK.F. SunY.F. Li X.J. BorysN. T. YuanH.K. Fullerton-ShireyS.ChernikovA.Zhao H.McDonnellS. M. LindenbergA.XiaoK.J. LeRoyB.Drndic M.C. M. HwangJ.ParkJ.ChhowallaM.E. SchaakR.JaveyA.C. HersamM.RobinsonJ.TerronesM., 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications, 2D Mater. 3, 042001 (2016)
[3]
F. Bonaccorso, L. Colombo, G. H. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347: 1246501
CrossRef ADS Google scholar
[4]
M. Gibertini, M. Koperski, A. F. Morpurgo, K. S. Novoselov. Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 2019, 14: 408
CrossRef ADS Google scholar
[5]
H. Li, S. C. Ruan, Y. J. Zeng. Intrinsic van Der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater., 2019, 31: 1900065
CrossRef ADS Google scholar
[6]
S. Rahman, J. F. Torres, A. R. Khan, Y. R. Lu. Recent developments in van der Waals antiferromagnetic 2D materials: Synthesis, characterization, and device implementation. ACS Nano, 2021, 15: 17175
CrossRef ADS Google scholar
[7]
C. M. Acosta, E. Ogoshi, J. A. Souza, G. M. Dalpian. Machine learning study of the magnetic ordering in 2D materials. ACS Appl. Mater. Interfaces, 2022, 17: 9418
CrossRef ADS Google scholar
[8]
L. S. Zhang, J. Zhou, H. Li, L. Shen, Y. P. Feng. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl. Phys. Rev., 2021, 8: 021308
CrossRef ADS Google scholar
[9]
N. D. Mermin, H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17: 1133
CrossRef ADS Google scholar
[10]
A. M. Hu, L. L. Wang, W. Z. Xiao, G. Xiao, Q. Y. Rong. Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer. Comput. Mater. Sci., 2015, 107: 72
CrossRef ADS Google scholar
[11]
C. Ataca, S. Ciraci. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C, 2011, 115: 13303
CrossRef ADS Google scholar
[12]
J. Zhang, J. M. Soon, K. P. Loh, J. H. Yin, J. Ding, M. B. Sullivian, P. Wu. Magnetic molybdenum disulfide nanosheet films. Nano Lett., 2007, 7: 2370
CrossRef ADS Google scholar
[13]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. D. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270
CrossRef ADS Google scholar
[14]
C. Gong, L. Li, Z. L. Li, H. W. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Z. Wang, Y. A. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265
CrossRef ADS Google scholar
[15]
Y. Liu, C. Petrovic. Critical behavior of quasi-two-dimensional semiconducting ferromagnet Cr2Ge2Te6. Phys. Rev. B, 2017, 96: 054406
CrossRef ADS Google scholar
[16]
Y. Liu, C. Petrovic. Three-dimensional magnetic critical behavior in CrI3. Phys. Rev. B, 2018, 97: 014420
CrossRef ADS Google scholar
[17]
X. Zhang, T. L. Yu, Q. Y. Xue, M. Lei, R. Z. Jiao. Critical behavior and magnetocaloric effect in monoclinic Cr5Te8. J. Alloys Compd., 2018, 750: 798
CrossRef ADS Google scholar
[18]
Y. Zhu, X. H. Kong, T. D. Rhone, H. Guo. Systematic search for two-dimensional ferromagnetic materials. Phys. Rev. Mater., 2018, 2: 081001
CrossRef ADS Google scholar
[19]
X. W. Zhang, B. Wang, Y. L. Guo, Y. H. Zhang, Y. F. Chen, J. L. Wang, High Curie temperature, intrinsic ferromagnetic half-metallicity in two-dimensional Cr3X4 (X = S. Te) nanosheets. Nanoscale Horiz., 2019, 4: 859
CrossRef ADS Google scholar
[20]
L. Z. Zhang, A. L. Zhang, X. D. He, X. W. Ben, Q. L. Xiao, W. L. Lu, F. Chen, Z. J. Feng, S. X. Cao, J. C. Zhang, J. Y. Ge. Critical behavior and magnetocaloric effect of the quasi-two-dimensional room-temperature ferromagnet Cr4Te5. Phys. Rev. B, 2020, 101: 214413
CrossRef ADS Google scholar
[21]
J.-J. Xian, C. Wang, J.-H. Nie, R. Li, M. Han, J. Lin, W.-H. Zhang, Z.-Y. Liu, Z.-M. Zhang, M.-P. Miao, Y. Yi, S. Wu, X. Chen, J. Han, Z. Xia, W. Ji, Y.-S. Fu. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2. Nat. Commun., 2022, 13: 257
CrossRef ADS Google scholar
[22]
P. Gao, X. Li, J. Yang. Thickness Dependent magnetic transition in few layer 1T phase CrTe2. J. Phys. Chem. Lett., 2021, 12: 6847
CrossRef ADS Google scholar
[23]
H. Y. Lv, W. J. Lu, D. F. Shao, Y. Liu, Y. P. Sun, Strain-controlled switch between ferromagnetism, antiferromagnetism in 1T-CrX2 (X = Se. Te) monolayers. Phys. Rev. B, 2015, 92: 214419
CrossRef ADS Google scholar
[24]
X. Yang, X. Zhou, W. Feng, Y. Yao. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2. Phys. Rev. B, 2021, 103: 024436
CrossRef ADS Google scholar
[25]
H. X. Li, L. J. Wang, J. S. Chen, T. Yu, L. Zhou, Y. Qiu, H. T. He, F. Ye, T. K. Sou, G. Wang. Molecular beam epitaxy grown Cr2Te3 thin films with tunable Curie temperatures for spintronic devices. ACS Appl. Nano Mater., 2019, 2: 6809
CrossRef ADS Google scholar
[26]
Y. Wen, Z. H. Liu, Y. Zhang, C. X. Xia, B. X. Zhai, X. H. Zhang, G. H. Zhai, C. Shen, P. He, R. Q. Cheng, L. Yin, Y. Y. Yao, M. G. Sendeku, Z. X. Wang, X. B. Ye, C. S. Liu, C. Jiang, C. X. Shan, Y. W. Long, J. He. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20: 3130
CrossRef ADS Google scholar
[27]
M. Bian, A. N. Kamenskii, M. Han, W. Li, S. Wei, X. Tian, D. B. Eason, F. Sun, K. He, H. Hui, F. Yao, R. Sabirianov, J. P. Bird, C. Yang, J. Miao, J. Lin, S. A. Crooker, Y. Hou, H. Zeng. Covalent 2D Cr2Te3 ferromagnet. Mater. Res. Lett, 2021, 9: 205
CrossRef ADS Google scholar
[28]
J. Yao, H. Wang, B. Yuan, Z. Hu, C. Wu, A. Zhao. Ultrathin van der Waals antiferromagnet CrTe3 for fabrication of in-plane CrTe3/CrTe2 monolayer magnetic heterostructures. Adv. Mater., 2022, 34: 2200236
CrossRef ADS Google scholar
[29]
R. Li, J.-H. Nie, J.-J. Xian, J.-W. Zhou, Y. Lu, M.-P. Miao, W.-H. Zhang, Y.-S. Fu. Planar heterojunction of ultrathin CrTe3 and CrTe2 van der Waals magnet. ACS Nano, 2022, 16: 4348
CrossRef ADS Google scholar
[30]
W. Y. Wang, J. Y. Fan, H. Liu, H. Zheng, C. L. Ma, L. Zhang, Y. B. Sun, C. X. Wang, Y. Zhu, H. Yang. Fabrication and magnetic-electronic properties of van der Waals Cr4Te5 ferromagnetic films. Crystengcomm, 2022, 24: 674
CrossRef ADS Google scholar
[31]
J. Wang, W. Y. Wang, J. Y. Fan, H. Zheng, H. Liu, C. L. Ma, L. Zhang, W. Tong, L. S. Ling, Y. Zhu, H. Yang. Epitaxial growth and room-temperature ferromagnetism of quasi-2D layered Cr4Te5 thin film. J. Phys. D: Appl. Phys., 2022, 55: 165001
CrossRef ADS Google scholar
[32]
Y. Liu, L. J. Wu, X. Tong, J. Li, J. Tao, Y. M. Zhu, C. Petrovic. Thickness-dependent magnetic order in CrI3 single crystals. Sci. Rep., 2019, 9: 13599
CrossRef ADS Google scholar
[33]
M. E. Fisher. The theory of equilibrium critical phenomena. Rep. Prog. Phys., 1967, 30: 615
CrossRef ADS Google scholar
[34]
H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, London and New York, 1971
[35]
A. Arrott. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 1957, 108: 1394
CrossRef ADS Google scholar
[36]
B. K. Banerjee. On a generalised approach to first and second order magnetic transitions. Phys. Lett., 1964, 12: 16
CrossRef ADS Google scholar
[37]
A. Arrott, J. E. Noakes. Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett., 1967, 19: 786
CrossRef ADS Google scholar
[38]
M. H. Phan, V. Franco, A. Chaturvedi, S. Stefanoski, G. S. Nolas, H. Srikanth. Origin of the magnetic anomaly and tunneling effect of europium on the ferromagnetic ordering in Eu8−xSrxGa16Ge30 (x=0, 4) type-I clathrates. Phys. Rev. B, 2011, 84: 054436
CrossRef ADS Google scholar
[39]
S. Lin, H. Y. Lv, J. C. Lin, Y. A. Huang, L. Zhang, W. H. Song, P. Tong, W. J. Lu, Y. P. Sun. Critical behavior in the itinerant ferromagnet AsNCr3 with tetragonal-antiperovskite structure. Phys. Rev. B, 2018, 98: 014412
CrossRef ADS Google scholar
[40]
A. Rahman, M. U. Rehman, D. C. Zhang, M. Zhang, X. Q. Wang, R. C. Dai, Z. P. Wang, X. P. Tao, L. Zhang, Z. M. Zhang. Critical behavior in the half-metallic Hensler alloy Co2TiSn. Phys. Rev. B, 2019, 100: 214419
CrossRef ADS Google scholar
[41]
B. Widom. Degree of the critical isotherm. J. Chem. Phys., 1964, 41: 1633
CrossRef ADS Google scholar
[42]
B. Widom. Equation of state in the neighborhood of the critical point. J. Chem. Phys., 1965, 43: 3898
CrossRef ADS Google scholar
[43]
J. Y. Fan, L. S. Ling, B. Hong, L. Zhang, L. Pi, Y. H. Zhang. Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO3. Phys. Rev. B, 2010, 81: 144426
CrossRef ADS Google scholar
[44]
A. Perumal, V. Srinivas, V. V. Rao, R. A. Dunlap. Quenched disorder and the critical behavior of a partially frustrated system. Phys. Rev. Lett., 2003, 91: 137202
CrossRef ADS Google scholar
[45]
A. K. Pramanik, A. Banerjee. Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: A bulk magnetization study. Phys. Rev. B, 2009, 79: 214426
CrossRef ADS Google scholar
[46]
J. Mira, J. Rivas, M. Vazquez, J. M. Garcia-Beneytez, J. Arcas, R. D. Sanchez, M. A. Senaris-Rodriguez. Critical exponents of the ferromagnetic-paramagnetic phase transition of La1−xSrxCoO3 (0.20 ≤ x ≤ 0.30). Phys. Rev. B, 1999, 59: 123
CrossRef ADS Google scholar
[47]
L. P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, J. Kane. Static phenomena near critical points: Theory and experiment. Rev. Mod. Phys., 1967, 39: 395
CrossRef ADS Google scholar
[48]
R. Thaljaoui, M. M. Nofal, R. M'Nassri. Thermomagnetic properties and critical behaviour studies in the ferromagnetic-Paramagnetic phase transition in Pr0.6Sr0.35Ag0.05MnO3 and Pr0.6Sr0.3Ag0.1MnO3 ceramics. Chem. Phys., 2021, 547: 111205
CrossRef ADS Google scholar
[49]
S. F. Fischer, S. N. Kaul, H. Kronmuller. Critical magnetic properties of disordered polyerystalline Cr75Fe25 and Cr70Fe30 alloys. Phys. Rev. B, 2002, 65: 064443
CrossRef ADS Google scholar
[50]
M. E. Fisher, S.-K. Ma, B. G. Nickel. Critical exponents for long-range interactions. Phys. Rev. Lett., 1972, 29: 917–920
CrossRef ADS Google scholar
[51]
X. J. Yang, J. X. Pan, W. Z. Gai, Y. P. Tao, H. Jia, L. M. Cao, Y. Cao. Three-dimensional critical behavior and anisotropic magnetic entropy change in quasi-two-dimensional LaCrSb3. Phys. Rev. B, 2022, 105: 024419
CrossRef ADS Google scholar
[52]
B. J. Liu, Y. M. Zou, S. M. Zhou, L. Zhang, Z. Wang, H. X. Li, Z. Qu, Y. H. Zhang. Critical behavior of the van der Waals bonded high TC ferromagnet Fe3GeTe2. Sci. Rep., 2017, 7: 6184
CrossRef ADS Google scholar
[53]
W. Liu, Y. H. Dai, Y. E. Yang, J. Y. Fan, L. Pi, L. Zhang, Y. H. Zhang. Critical behavior of the single-crystalline van der Waals bonded ferromagnet Cr2Ge2Te6. Phys. Rev. B, 2018, 98: 214420
CrossRef ADS Google scholar
[54]
Z. F. Li, X. Li, B. Ding, H. Li, Y. Yao, X. K. Xi, W. H. Wang. Magnetic anisotropy and critical behavior of the quaternary van der Waals ferromagnetic material Cr0.96Ge0.17Si0.82Te3. J. Phys.: Condens. Matter, 2021, 33: 425803
CrossRef ADS Google scholar
[55]
S. Mondal, N. Khan, S. M. Mishra, B. Satpati, P. Mandal. Critical behavior in the van derWaals itinerant ferromagnet Fe4GeTe2. Phys. Rev. B, 2021, 104: 094405
CrossRef ADS Google scholar
[56]
Y. Liu, C. Petrovic. Anisotropic magnetocaloric effect and critical behavior in CrCl3. Phys. Rev. B, 2020, 102: 014424
CrossRef ADS Google scholar
[57]
A. Bedoya-Pinto, J. R. Ji, A. K. Pandeya, P. Gargiani, M. Valvidares, P. Sessi, J. M. Taylor, F. Radu, K. Chang, S. S. P. Parkin. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science, 2021, 374: 616
CrossRef ADS Google scholar
[58]
G. T. Lin, X. Luo, F. C. Chen, J. Yan, J. J. Gao, Y. Sun, W. Tong, P. Tong, W. J. Lu, Z. G. Sheng, W. H. Song, X. B. Zhu, Y. P. Sun. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3. Appl. Phys. Lett., 2018, 112: 072405
CrossRef ADS Google scholar
[59]
A. Taroni, S. T. Bramwell, P. C. W. Holdsworth. Universal window for two-dimensional critical exponents. J. Phys.: Condens. Matter, 2008, 20: 275233
CrossRef ADS Google scholar
[60]
T. Moriya, Y. Takahashi. Spin fluctuation theory of itinerant electron ferromagnetism − A unified picture. J. Phys. Soc. Jpn., 1978, 45: 397
CrossRef ADS Google scholar
[61]
Y. Takahashi. On the origin of the Curie−Weiss law of the magnetic susceptibility in itinerant electron ferromagnetism. J. Phys. Soc. Jpn., 1986, 55: 3553
CrossRef ADS Google scholar
[62]
M. K. Chattopadhyay, P. Arora, S. B. Roy. Magnetic properties of the field-induced ferromagnetic state in MnSi. J. Phys.: Condens. Matter, 2009, 21: 296003
CrossRef ADS Google scholar
[63]
M. Imai, C. Michioka, H. Ueda, K. Yoshimura. Static and dynamical magnetic properties of the itinerant ferromagnet LaCo2P2. Phys. Rev. B, 2015, 91: 184414
CrossRef ADS Google scholar

Electronic supplementary material

Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s11467-022-1210-1 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1210-1 and are accessible for authorized users.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974181, 12074386, and 11874358), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_0177), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), and the Hongque Innovation Center (No. HQ202102003).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7213 KB)

Accesses

Citations

Detail

Sections
Recommended

/