Understanding the mechanisms of brain functions from the angle of synchronization and complex network

Tianwei Wu, Xinhua Zhang, Zonghua Liu

PDF(6064 KB)
PDF(6064 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 31504. DOI: 10.1007/s11467-022-1161-6
TOPICAL REVIEW
TOPICAL REVIEW

Understanding the mechanisms of brain functions from the angle of synchronization and complex network

Author information +
History +

Abstract

The human brain is the most complicated and fascinated system and executes various important brain functions, but its underlying mechanism is a long-standing problem. In recent years, based on the progress of complex network science, much attention has been paid to this problem and many important results have been achieved, thus it is the time to make a summary to help further studies. For this purpose, we here make a brief but comprehensive review on those results from the aspect of brain networks, i.e., from the angle of synchronization and complex network. First, we briefly discuss the main features of human brain and its cognitive functions through synchronization. Then, we discuss how to construct both the anatomical and functional brain networks, including the pathological brain networks such as epilepsy and Alzheimer’s diseases. Next, we discuss the approaches of studying brain networks. After that, we discuss the current progress of understanding the mechanisms of brain functions, including the aspects of chimera state, remote synchronization, explosive synchronization, intelligence quotient, and remote propagation. Finally, we make a brief discussion on the envision of future study.

Graphical abstract

Keywords

brain functions / complex network / synchronization / chimera state / remote synchronization / explosive synchronization / intelligence quotient / remote propagation

Cite this article

Download citation ▾
Tianwei Wu, Xinhua Zhang, Zonghua Liu. Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504 https://doi.org/10.1007/s11467-022-1161-6

References

[1]
G. Buzsaki, Rhythms of the Brain, Oxford University Press, New York, 2006
[2]
P. Bak, How Nature Works: The Science of Self-Organized Criticality, Springer, New York, 1996
CrossRef ADS Google scholar
[3]
L. de Arcangelis, C. Perrone-Capano, and H. J. Herrmann, Self-organized criticality model for brain plasticity, Phys. Rev. Lett. 96(2), 028107 (2006)
CrossRef ADS Google scholar
[4]
T. K. Hensch, Critical period regulation, Annu. Rev. Neurosci. 27(1), 549 (2004)
CrossRef ADS Google scholar
[5]
L. F. Abbott and S. B. Nelson, Synaptic plasticity: Taming the beast, Nat. Neurosci. 3(S11), 1178 (2000)
CrossRef ADS Google scholar
[6]
D. O. Hebb, The Organization of Behavior, John Wiley, New York, 1949
[7]
S. J. Cooper, Hebb’s synapse and learning rule: A history and commentary, Neurosci. Biobehav. Rev. 28(8), 851 (2005)
CrossRef ADS Google scholar
[8]
K. Bansal, J. O. Garcia, S. H. Tompson, T. Verstynen, J. M. Vettel, and S. F. Muldoon, Cognitive chimera states in human brain networks, Sci. Adv. 5(4), eaau8535 (2019)
CrossRef ADS Google scholar
[9]
P. Fries, A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence, Trends Cogn. Sci. 9(10), 474 (2005)
CrossRef ADS Google scholar
[10]
J. F. Hipp, A. K. Engel, and M. Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron 69(2), 387 (2011)
CrossRef ADS Google scholar
[11]
T. J. Buschman and E. K. Miller, Top-down versus bottomup control of attention in the prefrontal and posterior parietal cortices, Science 315(5820), 1860 (2007)
CrossRef ADS Google scholar
[12]
J. Gross, F. Schmitz, I. Schnitzler, K. Kessler, K. Shapiro, B. Hommel, and A. Schnitzler, Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans, Proc. Natl. Acad. Sci. USA 101(35), 13050 (2004)
CrossRef ADS Google scholar
[13]
F. Crick and C. Koch, Some reflections on visual awareness, Cold Spring Harb. Symp. Quant. Biol. 55(0), 953 (1990)
CrossRef ADS Google scholar
[14]
M. Volgushev, S. Chauvette, M. Mukovski, and I. Timofecv, Precise long-range synchronization of activity and silence in neoconical neurons during slow-wave sleep, J. Neurosci. 26(21), 5665 (2006)
CrossRef ADS Google scholar
[15]
L. M. Ward, Synchronous neural oscillations and cognitive processes, Trends Cogn. Sci. 7(12), 553 (2003)
CrossRef ADS Google scholar
[16]
E. Bullmore and O. Sporns, The economy of brain network organization, Nat. Rev. Neurosci. 13(5), 336 (2012)
CrossRef ADS Google scholar
[17]
K. Bansal, J. D. Medaglia, D. S. Bassett, J. M. Vettel, and S. F. Muldoon, Data-driven brain network models differentiate variability across language tasks, PLoS Comput. Biol. 14(10), e1006487 (2018)
CrossRef ADS Google scholar
[18]
P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, J. V. Wedeen, and O. Sporns, Mapping the structural core of human cerebral cortex, PLoS Biol. 6(7), e159 (2008)
CrossRef ADS Google scholar
[19]
S. B. Eickhoff, B. T. T. Yeo, and S. Genon, Imaging-based parcellations of the human brain, Nat. Rev. Neurosci. 19(11), 672 (2018)
CrossRef ADS Google scholar
[20]
C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hagmann, Predicting human resting-state functional connectivity from structural connectivity, Proc. Natl. Acad. Sci. USA 106(6), 2035 (2009)
CrossRef ADS Google scholar
[21]
S. Huo, C. Tian, M. Zheng, S. Guan, C. Zhou, and Z. Liu, Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure dynamics relationship in human brain, Natl. Sci. Rev. 8(1), nwaa125 (2021)
CrossRef ADS Google scholar
[22]
C. J. Stam, Characterization of anatomical and functional connectivity in the brain: A complex networks perspective, Int. J. Psychophysiol. 77(3), 186 (2010)
CrossRef ADS Google scholar
[23]
O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, Organization, development and function of complex brain networks, Trends Cogn. Sci. 8(9), 418 (2004)
CrossRef ADS Google scholar
[24]
V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, Scale-free brain functional networks, Phys. Rev. Lett. 94(1), 018102 (2005)
CrossRef ADS Google scholar
[25]
D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, Adaptive reconfiguration of fractal smallworld human brain functional networks, Proc. Natl. Acad. Sci. USA 103(51), 19518 (2006)
CrossRef ADS Google scholar
[26]
A. K. Engel, P. Fries, and W. Singer, Dynamic predictions: Oscillations and synchrony in top-down processing, Nat. Rev. Neurosci. 2(10), 704 (2001)
CrossRef ADS Google scholar
[27]
F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, The Brainweb: Phase Synchronization and Large-Scale Integration, Nat. Rev. Neurosci. 2(4), 229 (2001)
CrossRef ADS Google scholar
[28]
K. E. Stephan, C. C. Hilgetag, G. A. P. C. Burns, M. A. O’Neill, M. P. Young, and R. Kotter, Computational analysis of functional connectivity between areas of primate cerebral cortex, Philos. Trans. R. Soc. Lond. B 355(1393), 111 (2000)
CrossRef ADS Google scholar
[29]
L. M. A. Bettencourt, G. J. Stephens, M. I. Ham, and G. W. Gross, Functional structure of cortical neuronal networks grown in vitro, Phys. Rev. E 75(2), 021915 (2007)
CrossRef ADS Google scholar
[30]
M. Guye, G. Bettus, F. Bartolomei, and P. J. Cozzone, Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks, MAGMA 23(5–6), 409 (2010)
CrossRef ADS Google scholar
[31]
C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P. Scheltens, Small world networks and functional connectivity in Alzheimers disease, Cereb. Cortex 17(1), 92 (2006)
CrossRef ADS Google scholar
[32]
M. Chavez, M. Valencia, V. Navarro, V. Latora, and J. Martinerie, Functional modularity of background activities in normal and epileptic brain networks, Phys. Rev. Lett. 104(11), 118701 (2010)
CrossRef ADS Google scholar
[33]
M. Lynall, D. S. Bassett, R. Kerwin, P. J. McKenna, M. Kitzbichler, U. Muller, and E. Bullmore, Functional connectivity and brain networks in schizophrenia, J. Neurosci. 30(28), 9477 (2010)
CrossRef ADS Google scholar
[34]
K. J. Friston, Functional and effective connectivity in neuroimaging: A synthesis, Hum. Brain Mapp. 2(1–2), 56 (1994)
CrossRef ADS Google scholar
[35]
S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366(1–2), 1 (2002)
CrossRef ADS Google scholar
[36]
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, UK, 2001
CrossRef ADS Google scholar
[37]
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef ADS Google scholar
[38]
J. Fell and N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci. 12(2), 105 (2011)
CrossRef ADS Google scholar
[39]
P. Sauseng, W. Klimesch, M. Doppelmayr, S. Hanslmayr, M. Schabus, and W. R. Gruber, Theta coupling in the human electroencephalogram during a working memory task, Neurosci. Lett. 354(2), 123 (2004)
CrossRef ADS Google scholar
[40]
J. Sarnthein, H. Petsche, P. Rappelsberger, G. L. Shaw, and A. von Stein, Synchronization between prefrontal and posterior association cortex during human working memory, Proc. Natl. Acad. Sci. USA 95(12), 7092 (1998)
CrossRef ADS Google scholar
[41]
N. Axmacher, D. P. Schmitz, T. Wagner, C. E. Elger, and J. Fell, Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory, a combined intracranial EEG and functional magnetic resonance imaging study, J. Neurosci. 28(29), 7304 (2008)
CrossRef ADS Google scholar
[42]
P. Sauseng, W. Klimesch, K. F. Heise, W. R. Gruber, E. Holz, A. A. Karim, M. Glennon, C. Gerloff, N. Birbaumer, and F. C. Hummel, Brain oscillatory substrates of visual shortterm memory capacity, Curr. Biol. 19(21), 1846 (2009)
CrossRef ADS Google scholar
[43]
M. I. Rabinovich, A. N. Simmons, and P. Varona, Dynamical bridge between brain and mind, Trends Cogn. Sci. 19(8), 453 (2015)
CrossRef ADS Google scholar
[44]
H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. 12(1), 1 (1972)
CrossRef ADS Google scholar
[45]
S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S. Bassett, Stimulation-based control of dynamic brain networks, PLoS Comput. Biol. 12(9), e1005076 (2016)
CrossRef ADS Google scholar
[46]
F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel, Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals, Biol. Cybern. 83(4), 367 (2000)
CrossRef ADS Google scholar
[47]
C. Zhou, L. Zemanova, G. Zamora-Lopez, C. C. Hilgetag, and J. Kurths, StructureCfunction relationship in complex brain networks expressed by hierarchical synchronization, New J. Phys. 9(6), 178 (2007)
CrossRef ADS Google scholar
[48]
O. David, L. Harrison, and K. J. Friston, Modelling eventrelated responses in the brain, Neuroimage 25(3), 756 (2005)
CrossRef ADS Google scholar
[49]
J. M. Huntenburg, P. L. Bazin, and D. S. Margulies, Large-scale gradients in human cortical organization, Trends Cogn. Neurosci. 22, 21 (2018)
CrossRef ADS Google scholar
[50]
T. Ito, K. R. Kulkarni, D. H. Schultz, R. D. Mill, R. H. Chen, L. I. Solomyak, and M. W. Cole, Cognitive task information is transferred between brain regions via resting-state network topology, Nat. Commun. 8(1), 1027 (2017)
CrossRef ADS Google scholar
[51]
X. G. Wang, Synchronous patterns in complex networks, Sci. Sin. Phys. Mech. & Astron. 50, 010503 (2020)
CrossRef ADS Google scholar
[52]
M. L. Kelly, R. A. Peters, R. K. Tisdale, and J. A. Lesku, Unihemispheric sleep in crocodilians? J. Exp. Biol. 218(20), 3175 (2015)
CrossRef ADS Google scholar
[53]
N. C. Rattenborg, S. L. Lima, and C. J. Amlaner, Halfawake to the risk of predation, Nature 397(6718), 397 (1999)
CrossRef ADS Google scholar
[54]
N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
CrossRef ADS Google scholar
[55]
M. Tamaki, J. W. Bang, T. Watanabe, and Y. Sasaki, Night watch in one brain hemisphere during sleep associated with the first-night effect in humans, Curr. Biol. 26(9), 1190 (2016)
CrossRef ADS Google scholar
[56]
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef ADS Google scholar
[57]
M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28(3), R67 (2015)
CrossRef ADS Google scholar
[58]
S. Majhi, B. K. Bera, D. Ghosh, and M. Perc, Chimera states in neuronal networks: A review, Phys. Life Rev. 28, 100 (2019)
CrossRef ADS Google scholar
[59]
Z. Wang and Z. Liu, Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization, Acta Physica Sinica 69(8), 088902 (2020)
CrossRef ADS Google scholar
[60]
Z. Wang and Z. Liu, A brief review of chimera state in empirical brain networks, Front. Physiol. 11, 724 (2020)
CrossRef ADS Google scholar
[61]
R. Ma, J. Wang, and Z. Liu, Robust features of chimera states and the implementation of alternating chimera states, Europhys. Lett. 91(4), 40006 (2010)
CrossRef ADS Google scholar
[62]
Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
CrossRef ADS Google scholar
[63]
T. Chouzouris, I. Omelchenko, A. Zakharova, J. Hlinka, P. Jiruska, and E. Schöll, Chimera states in brain networks: Empirical neural vs. modular fractal connectivity, Chaos 28(4), 045112 (2018)
CrossRef ADS Google scholar
[64]
R. G. Andrzejak, C. Rummel, F. Mormann, and K. Schindler, All together now: Analogies between chimera state collapses and epileptic seizures, Sci. Rep. 6(1), 23000 (2016)
CrossRef ADS Google scholar
[65]
L. Kang, C. Tian, S. Huo, and Z. Liu, A two-layered brain network model and its chimera state, Sci. Rep. 9(1), 14389 (2019)
CrossRef ADS Google scholar
[66]
S. Huo, C. Tian, M. Zheng, S. Guan, C. S. Zhou, and Z. Liu, Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain, Natl. Sci. Rev. 8(1), nwaa125 (2021)
CrossRef ADS Google scholar
[67]
R. Vicente, L. L. Gollo, C. R. Mirasso, I. Fischer, and G. Pipa, Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays, Proc. Natl. Acad. Sci. USA 105(44), 17157 (2008)
CrossRef ADS Google scholar
[68]
P. R. Roelfsema, A. K. Engel, P. Konig, and W. Singer, Visuomotor integration is associated with zero time lag synchronization among cortical areas, Nature 385(6612), 157 (1997)
CrossRef ADS Google scholar
[69]
E. Rodriguez, N. George, J. P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, Perception’s shadow: Long-distance synchronization of human brain activity, Nature 397(6718), 430 (1999)
CrossRef ADS Google scholar
[70]
V. Vuksanović and P. Hovel, Functional connectivity of distant cortical regions: Role of remote synchronization and symmetry in interactions, Neuroimage 97, 1 (2014)
CrossRef ADS Google scholar
[71]
A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths, Remote synchronization in star networks, Phys. Rev. E 85(2), 026208 (2012)
CrossRef ADS Google scholar
[72]
L. Kang, Z. Wang, S. Huo, C. Tian, and Z. Liu, Remote synchronization in human cerebral cortex network with identical oscillators, Nonlinear Dyn. 99(2), 1577 (2020)
CrossRef ADS Google scholar
[73]
M. A. Kramer and S. S. Cash, Epilepsy as a disorder of cortical network organization, Neuroscientist 18(4), 360 (2012)
CrossRef ADS Google scholar
[74]
M. Guye, J. Regis, M. Tamura, F. Wendling, A. Mc Gonigal, P. Chauvel, and F. Bartolomei, The role of corticothalamic coupling in human temporal lobe epilepsy, Brain 129(7), 1917 (2006)
CrossRef ADS Google scholar
[75]
Z. Wang, C. Tian, M. Dhamala, and Z. Liu, A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network, Sci. Rep. 7(1), 561 (2017)
CrossRef ADS Google scholar
[76]
J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett. 106(12), 128701 (2011)
CrossRef ADS Google scholar
[77]
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña- Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
CrossRef ADS Google scholar
[78]
P. Ji, T. K. D. M. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
CrossRef ADS Google scholar
[79]
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
CrossRef ADS Google scholar
[80]
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
CrossRef ADS Google scholar
[81]
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4(1), 5200 (2015)
CrossRef ADS Google scholar
[82]
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef ADS Google scholar
[83]
S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
CrossRef ADS Google scholar
[84]
M. B. Kelz, Y. Sun, J. Chen, Q. Cheng Meng, J. T. Moore, S. C. Veasey, S. Dixon, M. Thornton, H. Funato, and M. Yanagisawa, An essential role for orexins in emergence from general anesthesia, Proc. Natl. Acad. Sci. USA 105(4), 1309 (2008)
CrossRef ADS Google scholar
[85]
E. B. Friedman, Y. Sun, J. T. Moore, H. T. Hung, Q. C. Meng, P. Perera, W. J. Joiner, S. A. Thomas, R. G. Eckenhoff, A. Sehgal, and M. B. Kelz, A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: Evidence for neural inertia, PLoS One 5(7), e11903 (2010)
CrossRef ADS Google scholar
[86]
W. J. Joiner, E. B. Friedman, H. T. Hung, K. Koh, M. Sowcik, A. Sehgal, and M. B. Kelz, Genetic and anatomical basis of the barrier separatingwakefulness and anesthetic-induced unresponsiveness, PLoS Genet. 9(9), e1003605 (2013)
CrossRef ADS Google scholar
[87]
M. Kim, G. A. Mashour, S. B. Moraes, G. Vanini, V. Tarnal, E. Janke, A. G. Hudetz, and U. Lee, Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness, Front. Comput. Neurosci. 10, 1 (2016)
CrossRef ADS Google scholar
[88]
A. C. Neubauer and A. Fink, Intelligence and neural efficiency, Neurosci. Biobehav. Rev. 33(7), 1004 (2009)
CrossRef ADS Google scholar
[89]
E. Genç, C. Fraenz, C. Schlüter, P. Friedrich, R. Hossiep, M. C. Voelkle, J. M. Ling, O. Güntürkün, and R. E. Jung, Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence, Nat. Commun. 9(1), 1905 (2018)
CrossRef ADS Google scholar
[90]
Y. Chen, S. Wang, C. C. Hilgetag, and C. Zhou, Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems, PLoS Comput. Biol. 9(3), e1002937 (2013)
CrossRef ADS Google scholar
[91]
M. Kaiser and C. Hilgetag, Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems, PLoS Comput. Biol. 2(7), e95 (2006)
CrossRef ADS Google scholar
[92]
J. Budd, K. Kovács, A. S. Ferecskó, P. Buzás, U. T. Eysel, and Z. F. Kisvárday, Neocortical axon arbors trade-off material and conduction delay conservation, PLoS Comput. Biol. 6(3), e1000711 (2010)
CrossRef ADS Google scholar
[93]
S. Baron-Cohen, R. C. Knickmeyer, and M. K. Belmonte, Sex differences in the brain: Implications for explaining autism, Science 310(5749), 819 (2005)
CrossRef ADS Google scholar
[94]
I. J. Deary, L. Penke, and W. Johnson, The neuroscience of human intelligence differences, Nat. Rev. Neurosci. 11(3), 201 (2010)
CrossRef ADS Google scholar
[95]
L. Cao and Z. Liu, How IQ depends on the running mode of brain network? Chaos 30(7), 073111 (2020)
CrossRef ADS Google scholar
[96]
J. Wang and Z. Liu, A chain model for signal detection and transmission, Europhys. Lett. 102(1), 10003 (2013)
CrossRef ADS Google scholar
[97]
Z. Liu, Organization network enhanced detection and transmission of phase–locking, Europhys. Lett. 100(6), 60002 (2012)
CrossRef ADS Google scholar
[98]
Q. Shen and Z. Liu, Remote firing propagation in the neural network of C. elegans, Phys. Rev. E 103(5), 052414 (2021)
CrossRef ADS Google scholar
[99]
Z. Wang and Z. Liu, Effect of remote signal propagation in an empirical brain network, Chaos 31(6), 063126 (2021)
CrossRef ADS Google scholar
[100]
I. Diez, A. Erramuzpe, I. Escudero, B. Mateos, A. Cabrera, D. Marinazzo, E. J. Sanz-Arigita, S. Stramaglia, and J. M. Cortes Diaz, Information flow between resting-state networks, Brain Connect. 5(9), 554 (2015)
CrossRef ADS Google scholar
[101]
M. R. Brier, J. B. Thomas, A. Z. Snyder, T. L. Benzinger, D. Zhang, M. E. Raichle, D. M. Holtzman, J. C. Morris, and B. M. Ances, Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression, J. Neurosci. 32(26), 8890 (2012)
CrossRef ADS Google scholar
[102]
E. J. Sanz-Arigita, M. M. Schoonheim, J. S. Damoiseaux, S. A. R. B. Rombouts, E. Maris, F. Barkhof, P. Scheltens, and C. J. Stam, Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of fMRI resting-state functional connectivity, PLoS One 5(11), e13788 (2010)
CrossRef ADS Google scholar
[103]
E. Başar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, Gamma, alpha, delta, and theta oscillations govern cognitive processes, Int. J. Psychophysiol. 39(2–3), 241 (2001)
CrossRef ADS Google scholar
[104]
E. Bullmore and O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10(3), 186 (2009)
CrossRef ADS Google scholar
[105]
R. Wang, P. Lin, M. Liu, Y. Wu, T. Zhou, and C. Zhou, Hierarchical connectome modes and critical state jointly maximize human brain functional diversity, Phys. Rev. Lett. 123(3), 038301 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(6064 KB)

Accesses

Citations

Detail

Sections
Recommended

/