Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system

Feng Chen, Aiguo Xu, Yudong Zhang, Yanbiao Gan, Bingbing Liu, Shuang Wang

PDF(5118 KB)
PDF(5118 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 33505. DOI: 10.1007/s11467-021-1145-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system

Author information +
History +

Abstract

The effects of initial perturbations on the Rayleigh–Taylor instability (RTI), Kelvin–Helmholtz instability (KHI), and the coupled Rayleigh–Taylor–Kelvin–Helmholtz instability (RTKHI) systems are investigated using a multiple-relaxation-time discrete Boltzmann model. Six different perturbation interfaces are designed to study the effects of the initial perturbations on the instability systems. It is found that the initial perturbation has a significant influence on the evolution of RTI. The sharper the interface, the faster the growth of bubble or spike. While the influence of initial interface shape on KHI evolution can be ignored. Based on the mean heat flux strength D3,1, the effects of initial interfaces on the coupled RTKHI are examined in detail. The research is focused on two aspects: (i) the main mechanism in the early stage of the RTKHI, (ii) the transition point from KHI-like to RTI-like for the case where the KHI dominates at earlier time and the RTI dominates at later time. It is found that the early main mechanism is related to the shape of the initial interface, which is represented by both the bilateral contact angle θ1 and the middle contact angle θ2. The increase of θ1 and the decrease of θ2 have opposite effects on the critical velocity. When θ2 remains roughly unchanged at 90 degrees, if θ1 is greater than 90 degrees (such as the parabolic interface), the critical shear velocity increases with the increase of θ1, and the ellipse perturbation is its limiting case; If θ1 is less than 90 degrees (such as the inverted parabolic and the inverted ellipse disturbances), the critical shear velocities are basically the same, which is less than that of the sinusoidal and sawtooth disturbances. The influence of inverted parabolic and inverted ellipse perturbations on the transition point of the RTKHI system is greater than that of other interfaces: (i) For the same amplitude, the smaller the contact angle θ1, the later the transition point appears; (ii) For the same interface morphology, the disturbance amplitude increases, resulting in a shorter duration of the linear growth stage, so the transition point is greatly advanced.

Graphical abstract

Keywords

discrete Boltzmann method / hydrodynamic instability / non-equilibrium characteristic / initial perturbation

Cite this article

Download citation ▾
Feng Chen, Aiguo Xu, Yudong Zhang, Yanbiao Gan, Bingbing Liu, Shuang Wang. Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system. Front. Phys., 2022, 17(3): 33505 https://doi.org/10.1007/s11467-021-1145-y

References

[1]
Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720, 1 (2017)
CrossRef ADS Google scholar
[2]
Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723-725, 1 (2017)
CrossRef ADS Google scholar
[3]
Y. Zhou, T. T. Clark, D. S. Clark, G. S. Gail, S. M. Aaron, C. M. Huntington, O. A. Hurricane, A. M. Dimits, and B. A. Remington, Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas 26(8), 080901 (2019)
CrossRef ADS Google scholar
[4]
H. Li, B. Tian, Z. He, and Y. Zhang, Growth mechanism of interfacial fluid mixing width induced by successive nonlinear wave interactions, Phys. Rev. E 103(5), 053109 (2021)
CrossRef ADS Google scholar
[5]
L. F. Wang, C. Xue, W. H. Ye, and Y. J. Li, Destabilizing effect of density gradient on the Kelvin–Helmholtz instability, Phys. Plasmas 16(11), 112104 (2009)
CrossRef ADS Google scholar
[6]
F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett. 90(5), 54003 (2010)
CrossRef ADS Google scholar
[7]
H. Liang, Q. X. Li, B. C. Shi, and Z. H. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh–Taylor instability, Phys. Rev. E 93(3), 033113 (2016)
CrossRef ADS Google scholar
[8]
H. Liang, X. L. Hu, X. F. Huang, and J. R. Xu, Direct numerical simulations of multi-mode immiscible Rayleigh–Taylor instability with high Reynolds numbers, Phys. Fluids 31(11), 112104 (2019)
CrossRef ADS Google scholar
[9]
H. Liang, Z. H. Xia, and H. W. Huang, Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33(8), 082103 (2021)
CrossRef ADS Google scholar
[10]
Z. Zhai, L. Zou, Q. Wu, and X. Luo, Review of experimental Richtmyer–Meshkov instability in shock tube: From simple to complex, J. Mech. Eng. Sci. 232(16), 2830 (2018)
CrossRef ADS Google scholar
[11]
L. Zou, J. Liu, S. Liao, X. Zheng, Z. Zhai, and X. Luo, Richtmyer–Meshkov instability of a flat interface subjected to a rippled shock wave, Phys. Rev. E 95(1), 013107 (2017)
CrossRef ADS Google scholar
[12]
L. Zou, M. Al-Marouf, W. Cheng, R. Samtaney, J. Ding, and X. Luo, Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock, J. Fluid Mech. 879, 448 (2019)
CrossRef ADS Google scholar
[13]
A. Ravid, R. I. Citron, and R. Jeanloz, Hydrodynamic instability at impact interfaces and planetary implications, Nat. Commun. 12(1), 2104 (2021)
CrossRef ADS Google scholar
[14]
Y. W. Bin, M. J. Xiao, Y. P. Shi, Y. S. Zhang, and S. Y. Chen, A new idea to predict reshocked Richtmyer– Meshkov mixing: Constrained large-eddy simulation, J. Fluid Mech. 918, R1 (2021)
CrossRef ADS Google scholar
[15]
H. Y. Ye, H. L. Lai, D. M. Li, Y. B. Gan, C. D. Lin, L. Chen, and A. G. Xu, Knudsen number effects on twodimensional Rayleigh–Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)
CrossRef ADS Google scholar
[16]
L. Chen, H. L. Lai, C. D. Lin, and D. M. Li, Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method, Front. Phys. 16(5), 52500 (2021)
CrossRef ADS Google scholar
[17]
J. G. Tang, F. Zhang, X. S. Luo, and Z. G. Zhai, Effect of Atwood number on convergent Richtmyer–Meshkov instability, Acta Mech. Sin. 37(3), 434 (2021)
CrossRef ADS Google scholar
[18]
C. D. Lin, K. H. Luo, Y. B. Gan, and Z. P. Liu, Kinetic simulation of nonequilibrium Kelvin–Helmholtz instability, Commun. Theor. Phys. 71(1), 132 (2019)
CrossRef ADS Google scholar
[19]
R. H. Zeng, J. J. Tao, and Y. B. Sun, Three-dimensional viscous Rayleigh–Taylor instability at the cylindrical interface, Phys. Rev. E 102(2), 023112 (2020)
CrossRef ADS Google scholar
[20]
Y. B. Sun, R. H. Zeng, and J. J. Tao, Effects of viscosity and elasticity on Rayleigh–Taylor instability in a cylindrical geometry, Phys. Plasmas 28(6), 062701 (2021)
CrossRef ADS Google scholar
[21]
G. Dimonte, Dependence of turbulent Rayleigh–Taylor (RT) instability on initial perturbations, Phys. Rev. E 69(5), 056305 (2004)
CrossRef ADS Google scholar
[22]
A. R. Miles, M. J. Edwards, and J. A. Greenough, Effect of initial conditions on two-dimensional Rayleigh–Taylor instability and transition to turbulence in planar blastwave- driven systems, Phys. Plasmas 11(11), 5278 (2004)
CrossRef ADS Google scholar
[23]
P. Ramaprabhu, G. Dimonte, and M. J. Andrews, A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability, J. Fluid Mech. 536, 285 (2005)
CrossRef ADS Google scholar
[24]
D. H. Olson and J. W. Jacobs, Experimental study of Rayleigh–Taylor instability with a complex initial perturbation, Phys. Fluids 21(3), 034103 (2009)
CrossRef ADS Google scholar
[25]
A. A. Gowardhan, J. R. Ristorcelli, and F. F. Grinstein, The bipolar behavior of the Richtmyer–Meshkov instability, Phys. Fluids 23(7), 071701 (2011)
CrossRef ADS Google scholar
[26]
Y. Doron and A. Duggleby, Optical density measurements and analysis for single-mode initial-condition buoyancydriven mixing, J. Fluids Eng. 133(10), 101204 (2011)
CrossRef ADS Google scholar
[27]
T. Wei and D. Livescu, Late-time quadratic growth in single-mode Rayleigh–Taylor instability, Phys. Rev. E 86(4), 046405 (2012)
CrossRef ADS Google scholar
[28]
S. Kuchibhatla and D. Ranjan, Effect of initial conditions on Rayleigh–Taylor mixing: Modal interaction, Phys. Scr. T155, 014057 (2013)
CrossRef ADS Google scholar
[29]
W. H. Liu, L. F. Wang, W. H. Ye, and X. T. He, Temporal evolution of bubble tip velocity in classical Rayleigh– Taylor instability at arbitrary Atwood numbers, Phys. Plasmas 20(6), 062101 (2013)
CrossRef ADS Google scholar
[30]
J. A. Mc Farland, J. A. Greenough, and D. Ranjan, Investigation of the initial perturbation amplitude for the inclined interface Richtmyer–Meshkov instability, Phys. Scr. T155, 014014 (2013)
CrossRef ADS Google scholar
[31]
Z. G. Zhai, M. H. Wang, T. Si, and X. S. Luo, On the interaction of a planar shock with a light polygonal interface, J. Fluid Mech. 757, 800 (2014)
CrossRef ADS Google scholar
[32]
X. S. Luo, M. H. Wang, T. Si, and Z. G. Zhai, On the interaction of a planar shock with an SF6 polygon, J. Fluid Mech. 773, 366 (2015)
CrossRef ADS Google scholar
[33]
Z. Dell, R. F. Stellingwerf, and S. I. Abarzhi, Effect of initial perturbation amplitude on Richtmyer–Meshkov flows induced by strong shocks, Phys. Plasmas 22(9), 092711 (2015)
CrossRef ADS Google scholar
[34]
J. X. Xiao, J. S. Bai, and T. Wang, Numerical study of initial perturbation effects on Richtmyer–Meshkov instability in non-uniform flows, Phys. Rev. E 94(1), 013112 (2016)
CrossRef ADS Google scholar
[35]
C. Y. Xie, J. J. Tao, Z. L. Sun, and J. Li, Retarding viscous Rayleigh–Taylor mixing by an optimized additional mode, Phys. Rev. E 95(2), 023109 (2017)
CrossRef ADS Google scholar
[36]
A. Kord and J. Capecelatro, Optimal perturbations for controlling the growth of a Rayleigh–Taylor instability, J. Fluid Mech. 876, 150 (2019)
CrossRef ADS Google scholar
[37]
R. Sun, J. C. Ding, Z. G. Zhai, T. Si, and X. S. Luo, Convergent Richtmyer–Meshkov instability of heavy gas layer with perturbed inner surface, J. Fluid Mech. 902, A3 (2020)
CrossRef ADS Google scholar
[38]
Y. Liang, L. L. Liu, Z. G. Zhai, T. Si, and X. S. Luo, Universal perturbation growth of Richtmyer–Meshkov instability for minimum-surface featured interface induced by weak shock waves, Phys. Fluids 33(3), 032110 (2021)
CrossRef ADS Google scholar
[39]
L. F. Wang, W. H. Ye, and Y. J. Li, Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities, Phys. Plasmas 17(4), 042103 (2010)
CrossRef ADS Google scholar
[40]
W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles, Phys. Plasmas 18(2), 022704 (2011)
CrossRef ADS Google scholar
[41]
L. Mandal, S. Roy, R. Banerjee, M. Khan, and M. R. Gupta, Evolution of nonlinear interfacial structure induced by combined effect of Rayleigh–Taylor and Kelvin– Helmholtz instability, Nucl. Instr. Meth. Phys. Res. A 653(1), 103 (2011)
CrossRef ADS Google scholar
[42]
B. J. Olson, J. Larsson, S. K. Lele, and A. W. Cook, Nonlinear effects in the combined Rayleigh–Taylor/Kelvin– Helmholtz instability, Phys. Fluids 23(11), 114107 (2011)
CrossRef ADS Google scholar
[43]
B. Akula, M. J. Andrews, and D. Ranjan, Effect of shear on Rayleigh–Taylor mixing at small Atwood number, Phys. Rev. E 87(3), 033013 (2013)
CrossRef ADS Google scholar
[44]
M. Vadivukkarasan and M. V. Panchagnula, Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface, Int. J. Spray Combust. 8(4), 219 (2016)
CrossRef ADS Google scholar
[45]
M. Vadivukkarasan and M. V. Panchagnula, Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet, J. Fluid Mech. 812, 152 (2017)
CrossRef ADS Google scholar
[46]
M. Vadivukkarasan, Temporal instability characteristics of Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of an inviscid cylindrical interface, Meccanica 56(1), 117 (2021)
CrossRef ADS Google scholar
[47]
V. D. Sarychev, S. A. Nevskii, A. Y. Granovskii, S. V. Konovalov, and V. E. Gromov, Combined Rayleigh– Taylor-Kelvin–Helmholtz instability and its role in the formation of the surface relief of the coating/substrate, AIP Conf. Proc. 2167, 020307 (2019)
CrossRef ADS Google scholar
[48]
S. Brizzolara, J. Mollicone, M. Van Reeuwijk, A. Mazzino, and M. Holzner, Transition from shear-dominated to Rayleigh–Taylor turbulence, J. Fluid Mech. 924, A10 (2021)
CrossRef ADS Google scholar
[49]
F. Chen, A. G. Xu, Y. D. Zhang, and Q. K. Zeng, Morphological and nonequilibrium analysis of coupled Rayleigh– Taylor-Kelvin–Helmholtz instability, Phys. Fluids 32(10), 104111 (2020)
CrossRef ADS Google scholar
[50]
Without causing misunderstanding, DBM is used as an abbreviation of discrete Boltzmann Model/Modeling/Method.
[51]
A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
CrossRef ADS Google scholar
[52]
A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Phys. Sin. 64(18), 184701 (2015)
CrossRef ADS Google scholar
[53]
A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38, 361 (2016)
[54]
A. G. Xu, G. C. Zhang, and Y. D. Zhang, Discrete Boltzmann Modeling of Compressible Flows, Chapter 2 in Kinetic Theory, edited by G. Z. Kyzas and A. C. Mitropoulos, Rijeka: In Tech, 2018
[55]
A. G. Xu, J. Chen, J. H. Song, D. W. Chen, and Z. H. Chen, Progress of discrete Boltzmann study on multiphase complex flows, Acta Aerodyn. Sin. 39(3), 138 (2021)
[56]
A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying, Modeling and analysis methods for complex fields based on phase space, Chinese J. Comput. Phys. 38(6), 631 (2021) (in Chinese)
[57]
A. G. Xu, Y. M. Shan, F. Chen, Y. B. Gan, and C. D. Lin, Progress of mesoscale modeling and investigation of combustion multiphase flow, Acta Aero. Astro. Sin. 42(12), 625842 (2021)
[58]
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
[59]
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222(3), 145 (1992)
CrossRef ADS Google scholar
[60]
X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)
CrossRef ADS Google scholar
[61]
Y. Zhang, R. Qin, and D. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71(4), 047702 (2005)
CrossRef ADS Google scholar
[62]
V. E. Ambruç and V. Sofonea, Quadrature-Based Lattice Boltzmann Models for Rarefied Gas Flow, edited by F. Toschi and M. Sega, Springer, 2019
CrossRef ADS Google scholar
[63]
Y. B. Li and X. W. Shan, Lattice Boltzmann method for adiabatic acoustic, Phil. Trans. R. Soc. A 369(1944), 2371 (2011)
CrossRef ADS Google scholar
[64]
Q. Li, K. H. Luo, Y. J. Gao, and Y. L. He, Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E 85(2), 026704 (2012)
CrossRef ADS Google scholar
[65]
Z. Wang, Y. Wei, and Y. Qian, A simple direct heating thermal immersed boundary-lattice Boltzmann method for its application in incompressible flow, Comput. Math. Appl. 80(6), 1633 (2020)
CrossRef ADS Google scholar
[66]
Z. Chen, C. Shu, and D. Tan, Highly accurate simplified lattice Boltzmann method, Phys. Fluids 30(10), 103605 (2018)
CrossRef ADS Google scholar
[67]
F. B. Tian, H. Luo, L. Zhu, J. C. Liao, and X. Y. Lu, An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys. 230(19), 7266 (2011)
CrossRef ADS Google scholar
[68]
F. B. Tian, Y. Wang, H. Liu, and Y. Zhang, The lattice Boltzmann method and its applications in complex flows and fluid-structure interactions, Inst. Mech. Eng. C 232(3), 403 (2018)
CrossRef ADS Google scholar
[69]
H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phase-fieldbased multiple relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89(5), 053320 (2014)
CrossRef ADS Google scholar
[70]
Y. Wang, C. Zhong, C. Zhuo, and S. Liu, A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part I: Numerical framework and its application to laminar flow simulation, Comput. Math. Appl. 79(5), 1590 (2020)
CrossRef ADS Google scholar
[71]
K. Pasieczynski and B. X. Chen, Multipseudopotential interaction models for thermal lattice Boltzmann method simulations, Phys. Rev. E 102(1), 013311 (2020)
CrossRef ADS Google scholar
[72]
R. Qiu, Y. Bao, T. Zhou, H. Che, R. Chen, and Y. You, Study of regular reflection shock waves using a mesoscopic kinetic approach: Curvature pattern and effects of viscosity, Phys. Fluids 32(10), 106106 (2020)
CrossRef ADS Google scholar
[73]
R. Qiu, T. Zhou, Y. Bao, K. Zhou, H. Che, and Y. You, Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube, Phys. Rev. E 103(5), 053113 (2021)
CrossRef ADS Google scholar
[74]
D. K. Sun, A discrete kinetic scheme to model anisotropic liquid-solid phase transitions, Appl. Math. Lett. 103, 106222 (2020)
CrossRef ADS Google scholar
[75]
D. K. Sun, H. Xing, X. L. Dong, and Y. S. Han, An anisotropic lattice Boltzmann-phase field scheme for numerical simulations of dendritic growth with melt convection, Int. J. Heat Mass Tran. 133, 1240 (2019)
CrossRef ADS Google scholar
[76]
C. J. Zhan, Z. H. Chai, and B. C. Shi, A lattice Boltzmann model for the coupled cross-diffusion-fluid system, Appl. Math. Comput. 400, 126105 (2021)
CrossRef ADS Google scholar
[77]
A. Xu, G. Zhang, X. Pan, P. Zhang, and J. Zhu, Morphological characterization of shocked porous material, J. Phys. D 42(7), 075409 (2009)
CrossRef ADS Google scholar
[78]
A. G. Xu, G. C. Zhang, H. Li, Y. J. Ying, X. J. Yu, and J. S. Zhu, Temperature pattern dynamics in shocked porous materials, Sci. China Phys. Mech. Astron. 53(8), 1466 (2010)
CrossRef ADS Google scholar
[79]
A. G. Xu, G. C. Zhang, Y. J. Ying, and C. Wang, Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China Phys. Mech. Astron. 59(5), 650501 (2016)
CrossRef ADS Google scholar
[80]
F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability, Front. Phys. 11(6), 114703 (2016)
CrossRef ADS Google scholar
[81]
F. Chen, A. Xu, and G. Zhang, Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability, Phys. Fluids 30(10), 102105 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5118 KB)

Accesses

Citations

Detail

Sections
Recommended

/