Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity

Fu-Quan Dou , Yuan-Jin Wang , Jian-An Sun

Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 31503

PDF (1553KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 31503 DOI: 10.1007/s11467-021-1130-5
RESEARCH ARTICLE

Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity

Author information +
History +
PDF (1553KB)

Abstract

Quantum batteries are energy storage devices that satisfy quantum mechanical principles. How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery. Here, we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity, which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian. The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage. We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery. Possible experimental implementation in superconducting circuit and nitrogen–vacancy center is also discussed.

Graphical abstract

Keywords

quantum battery / charging and discharging dynamics / shortcuts to adiabaticity

Cite this article

Download citation ▾
Fu-Quan Dou, Yuan-Jin Wang, Jian-An Sun. Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity. Front. Phys., 2022, 17(3): 31503 DOI:10.1007/s11467-021-1130-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F.Campaioli, F. A.Pollock, and S.Vinjanampathy, Quantum batteries, in: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Springer International Publishing, Cham, 2018, pp 207–225

[2]

S.Bhattacharjee and A.Dutta, Quantum thermal machines and batteries, arXiv: 2008.07889 [quant-ph] (2020)

[3]

J. Q.Quach and W. J.Munro, Using dark states to charge and stabilise open quantum batteries, arXiv: 2002.10044 [quant-ph](2020)

[4]

K.Sen and U.Sen, Local passivity and entanglement in shared quantum batteries, arXiv: 1911.05540 [quant-ph](2019)

[5]

F. H.Kamin, F. T.Tabesh, S.Salimi, and A. C.Santos, Entanglement, coherence and charging process of quantum batteries, Phys. Rev. E102, 052109 (2020)

[6]

L. P.García-Pintos, A.Hamma, and A.del Campo, Fluctuations in extractable work bound the charging power of quantum batteries, Phys. Rev. Lett.125(4), 040601 (2020)

[7]

M.Carrega, A.Crescente, D.Ferraro, and M.Sassetti, Dissipative dynamics of an open quantum battery, New J. Phys.22(8), 083085 (2020)

[8]

F.Barra, Dissipative charging of a quantum battery, Phys. Rev. Lett.122(21), 210601 (2019)

[9]

F.Pirmoradian and K.Mølmer, Aging of a quantum battery, Phys. Rev. A100(4), 043833 (2019)

[10]

K. V.Hovhannisyan, M.Perarnau-Llobet, M.Huber, and A.Acín, Entanglement generation is not necessary for optimal work extraction, Phys. Rev. Lett.111(24), 240401 (2013)

[11]

F. T.Tabesh, F. H.Kamin, and S.Salimi, Environment-mediated charging process of quantum batteries, arXiv: 2005.12823 [quant-ph] (2020)

[12]

F.Campaioli, F. A.Pollock, F. C.Binder, L.Céleri, J.Goold, S.Vinjanampathy, and K.Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett.118(15), 150601 (2017)

[13]

S.Gherardini, F.Campaioli, F.Caruso, and F. C.Binder, Stabilizing open quantum batteries by sequential measurements, Phys. Rev. Research2(1), 013095 (2020)

[14]

R.Alicki and M.Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E87(4), 042123 (2013)

[15]

J.Monsel, M.Fellous-Asiani, B.Huard, and A.Auffèves, The energetic cost of work extraction, Phys. Rev. Lett.124(13), 130601 (2020)

[16]

F. H.Kamin, F. T.Tabesh, S.Salimi, F.Kheirandish, and A. C.Santos, Non-Markovian effects on charging and self-discharging process of quantum batteries, New J. Phys.22(8), 083007 (2020)

[17]

D.Ferraro, M.Campisi, G. M.Andolina, V.Pellegrini, and M.Polini, High-power collective charging of a solid-state quantum battery, Phys. Rev. Lett.120(11), 117702 (2018)

[18]

X.Zhang and M.blaauboer, Enhanced energy transfer in a Dicke quantum battery, arXiv: 1812.10139 [quant-ph] (2018)

[19]

G. M.Andolina, M.Keck, A.Mari, M.Campisi, V.Giovannetti, and M.Polini, Extractable work, the role of correlations, and asymptotic freedom in quantum batteries, Phys. Rev. Lett.122(4), 047702 (2019)

[20]

F. C.Binder, S.Vinjanampathy, K.Modi, and J.Goold, Quantacell: Powerful charging of quantum batteries, New J. Phys.17(7), 075015 (2015)

[21]

A.Crescente, M.Carrega, M.Sassetti, and D.Ferraro, Charging and energy fluctuations of a driven quantum battery, New J. Phys.22(6), 063057 (2020)

[22]

S.Julià-Farré, T.Salamon, A.Riera, M. N.Bera, and M.Lewenstein, Bounds on the capacity and power of quantum batteries, Phys. Rev. Research2(2), 023113 (2020)

[23]

B.Mohan and A. K.Pati, Reverse quantum speed limit: How slow quantum battery can discharge? arXiv: 2006.14523 [quant-ph] (2020)

[24]

W.Niedenzu, V.Mukherjee, A.Ghosh, A. G.Kofman, and G.Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics, Nat. Commun.9(1), 165 (2018)

[25]

F.Caravelli, G.Coulter-De Wit, L. P.García-Pintos, and A.Hamma, Random quantum batteries, Phys. Rev. Research2(2), 023095 (2020)

[26]

T. P.Le, J.Levinsen, K.Modi, M. M.Parish, and F. A.Pollock, Spin-chain model of a many-body quantum battery, Phys. Rev. A97(2), 022106 (2018)

[27]

S.Ghosh, T.Chanda, and A.Sen(De), Enhancement in the performance of a quantum battery by ordered and disordered interactions, Phys. Rev. A101(3), 032115 (2020)

[28]

F.Zhao, F. Q.Dou, and Q.Zhao, Quantum battery of interacting spins with environmental noise, Phys. Rev. A103(3), 033715 (2021)

[29]

D.Rossini, G. M.Andolina, and M.Polini, Many-body localized quantum batteries, Phys. Rev. B100(11), 115142 (2019)

[30]

S.Zakavati, F. T.Tabesh, and S.Salimi, Bounds on charging power of open quantum batteries, arXiv: 2003.09814 [quant-ph] (2020)

[31]

S.Ghosh, T.Chanda, S.Mal, and A. S.De, Fast charging of quantum battery assisted by noise, arXiv: 2005.12859 [quant-ph] (2020)

[32]

A. C.Santos, A.Saguia, and M. S.Sarandy, Stable and charge-switchable quantum batteries, Phys. Rev. E101(6), 062114 (2020)

[33]

D.Rossini, G. M.Andolina, D.Rosa, M.Carrega, and M.Polini, Quantum charging supremacy via Sachdevye–Kitaev batteries, arXiv: 1912.07234 [condmat.str-el] (2019)

[34]

D.Rosa, D.Rossini, G. M.Andolina,, M.Polini, and M.Carrega, Ultra stable charging of fastest scrambling quantum batteries, arXiv: 1912.07247 [condmat.str-el] (2019)

[35]

Y. Y.Zhang, T. R.Yang, L.Fu, and X.Wang, Powerful harmonic charging in a quantum battery, Phys. Rev. E99(5), 052106 (2019)

[36]

G. M.Andolina, D.Farina, A.Mari, V.Pellegrini, V.Giovannetti, and M.Polini, Charger-mediated energy transfer in exactly solvable models for quantum batteries, Phys. Rev. B98(20), 205423 (2018)

[37]

G. M.Andolina, M.Keck, A.Mari, V.Giovannetti, and M.Polini, Quantum versus classical many-body batteries, Phys. Rev. B99(20), 205437 (2019)

[38]

J. Chen,L. Zhan,L. Shao,X. Zhang,Y. Zhang, and X. Wang, Charging quantum batteries with a general harmonic driving field, Ann. Phys. 532(4), 1900487 (2020)

[39]

A. C. Santos,B. Çakmak,S. Campbell, and N. T. Zinner, Stable adiabatic quantum batteries, Phys. Rev. E 100(3), 032107 (2019)

[40]

F. Q. Dou,Y. J. Wang, and J. A. Sun, Closed-loop three-level charged quantum battery, EPL (Europhysics Letters) 131(4), 43001 (2020)

[41]

N. V. Vitanov,A. A. Rangelov,B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)

[42]

K. Bergmann,H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70(3), 1003 (1998)

[43]

B. W. Shore, Picturing stimulated Raman adiabatic passage: A STIRAP tutorial, Adv. Opt. Photonics 9(3), 563 (2017)

[44]

X. Chen,I. Lizuain,A. Ruschhaupt,D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)

[45]

D. Guéry-Odelin,A. Ruschhaupt,A. Kiely,E. Torrontegui,S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)

[46]

M. Theisen,F. Petiziol,S. Carretta,P. Santini, and S. Wimberger, Superadiabatic driving of a three-level quantum system, Phys. Rev. A 96(1), 013431 (2017)

[47]

F. Dou,J. Liu, and L. Fu, High-fidelity superadiabatic population transfer of a two-level system with a linearly chirped Gaussian pulse, EPL (Europhysics Letters) 116(6), 60014 (2016)

[48]

M. V. Berry, Transitionless quantum driving, J. Phys. A Math. Theor. 42(36), 365303 (2009)

[49]

M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107(46), 9937 (2003)

[50]

A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)

[51]

L. Giannelli and E. Arimondo, Three-level superadiabatic quantum driving, Phys. Rev. A 89(3), 033419 (2014)

[52]

N. V. Vitanov and M. Drewsen, Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity, Phys. Rev. Lett. 122(17), 173202 (2019)

[53]

S. Li,P. Shen,T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)

[54]

A. Vepsäläinen,S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv. 5(2), eaau5999 (2019)

[55]

A. Barfuss,J. Kölbl,L. Thiel,J. Teissier,M. Kasperczyk, and P. Maletinsky, Phase-controlled coherent dynamics of a single spin under closed-contour interaction, Nat. Phys. 14(11), 1087 (2018)

[56]

J. Kölbl,A. Barfuss,M. S. Kasperczyk,L. Thiel,A. A. Clerk,H. Ribeiro, and P. Maletinsky, Initialization of single spin dressed states using shortcuts to adiabaticity, Phys. Rev. Lett. 122(9), 090502 (2019)

[57]

J. Zhang,J. H. Shim,I. Niemeyer,T. Taniguchi,T. Teraji,H. Abe,S. Onoda,T. Yamamoto,T. Ohshima,J. Isoya, and D. Suter, Experimental implementation of assisted quantum adiabatic passage in a single spin, Phys. Rev. Lett. 110(24), 240501 (2013)

[58]

J. F. Schaff,X. L. Song,P. Capuzzi,P. Vignolo, and G. Labeyrie, Shortcut to adiabaticity for an interacting Bose–Einstein condensate, EPL (Europhysics Letters) 93(2), 23001 (2011)

[59]

Y. X. Du,Z. T. Liang,Y. C. Li,X. X. Yue,Q. X. Lv,W. Huang,X. Chen,H. Yan, and S. L. Zhu, Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms, Nat. Commun. 7(1), 12479 (2016)

[60]

L. F. C. Moraes,A. Saguia,A. C. Santos, and M. S. Sarandy, Charging power and stability of always-on transitionless driven quantum batteries, arXiv: 2012.05855 [quant-ph] (2020)

[61]

A. E. Allahverdyan,R. Balian, and T. M. Nieuwenhuizen, Maximal work extraction from finite quantum systems, EPL (Europhysics Letters) 67(4), 565 (2004)

[62]

M. Alimuddin,T. Guha, and P. Parashar, Structure of passive states and its implication in charging quantum batteries, Phys. Rev. E 102(2), 022106 (2020)

[63]

B. Akmak, Ergotropy from coherences in an open quantum system, arXiv: 2005.08489 [quant-ph] (2020)

[64]

K. Ito and G. Watanabe, Collectively enhanced high-power and high-capacity charging of quantum batteries via quantum heat engines, arXiv: 2008.07089 [quant-ph] (2020)

[65]

F. Tacchino,T. F. F. Santos,D. Gerace,M. Campisi, and M. F. Santos, Non-equilibrium steady states as resources for quantum heat engines, arXiv: 2007.04463 [quant-ph] (2020)

[66]

J. R. Kuklinski,U. Gaubatz,F. T. Hioe, and K. Bergmann, Adiabatic population transfer in a three-level system driven by delayed laser pulses, Phys. Rev. A 40(11), 6741 (1989)

[67]

F. Petiziol,E. Arimondo,L. Giannelli,F. Mintert, and S. Wimberger, Optimized three-level quantum transfers based on frequency-modulated optical excitations, Sci. Rep. 10(1), 2185 (2020)

[68]

A. Vepsäläinen and G. S. Paraoanu, Simulating spin chains using a superconducting circuit: Gauge invariance, supera-diabatic transport, and broken time-reversal symmetry, Adv. Quantum Technol. 3(4), 1900121 (2020)

[69]

C. K. Hu,J. Qiu,P. J. P. Souza,J. Yuan,Y. Zhou,L. Zhang,J. Chu,X. Pan,L. Hu,J. Li,Y. Xu,Y. Zhong,S. Liu,F. Yan,D. Tan,R. Bachelard,C. J. Villas-Boas,A. C. Santos, and D. Yu, Optimal charging of a superconducting quantum battery, arXiv: 2108.04298 [quant-ph] (2021)

[70]

J. H. Zhang and F. Q. Dou, High-fidelity formation of deeply bound ultracold molecules via non-Hermitian shortcut to adiabaticity, New J. Phys. 23(6), 063001 (2021)

[71]

H. Hu,S. Qi, and J. Jing, Fast and stable charging via a shortcut to adiabaticity, arXiv: 2104.12143 [quant-ph] (2021)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1553KB)

1062

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/