Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity
Fu-Quan Dou, Yuan-Jin Wang, Jian-An Sun
Highly efficient charging and discharging of three-level quantum batteries through shortcuts to adiabaticity
Quantum batteries are energy storage devices that satisfy quantum mechanical principles. How to improve the battery’s performance such as stored energy and power is a crucial element in the quantum battery. Here, we investigate the charging and discharging dynamics of a three-level counterdiabatic stimulated Raman adiabatic passage quantum battery via shortcuts to adiabaticity, which can compensate for undesired transitions to realize a fast adiabatic evolution through the application of an additional control field to an initial Hamiltonian. The scheme can significantly speed up the charging and discharging processes of a three-level quantum battery and obtain more stored energy and higher power compared with the original stimulated Raman adiabatic passage. We explore the effect of both the amplitude and the delay time of driving fields on the performances of the quantum battery. Possible experimental implementation in superconducting circuit and nitrogen–vacancy center is also discussed.
quantum battery / charging and discharging dynamics / shortcuts to adiabaticity
[1] |
F.Campaioli, F. A.Pollock, and S.Vinjanampathy, Quantum batteries, in: Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, Springer International Publishing, Cham, 2018, pp 207–225
CrossRef
ADS
Google scholar
|
[2] |
S.Bhattacharjee and A.Dutta, Quantum thermal machines and batteries, arXiv: 2008.07889 [quant-ph] (2020)
|
[3] |
J. Q.Quach and W. J.Munro, Using dark states to charge and stabilise open quantum batteries, arXiv: 2002.10044 [quant-ph](2020)
CrossRef
ADS
Google scholar
|
[4] |
K.Sen and U.Sen, Local passivity and entanglement in shared quantum batteries, arXiv: 1911.05540 [quant-ph](2019)
|
[5] |
F. H.Kamin, F. T.Tabesh, S.Salimi, and A. C.Santos, Entanglement, coherence and charging process of quantum batteries, Phys. Rev. E102, 052109 (2020)
CrossRef
ADS
Google scholar
|
[6] |
L. P.García-Pintos, A.Hamma, and A.del Campo, Fluctuations in extractable work bound the charging power of quantum batteries, Phys. Rev. Lett.125(4), 040601 (2020)
CrossRef
ADS
Google scholar
|
[7] |
M.Carrega, A.Crescente, D.Ferraro, and M.Sassetti, Dissipative dynamics of an open quantum battery, New J. Phys.22(8), 083085 (2020)
CrossRef
ADS
Google scholar
|
[8] |
F.Barra, Dissipative charging of a quantum battery, Phys. Rev. Lett.122(21), 210601 (2019)
CrossRef
ADS
Google scholar
|
[9] |
F.Pirmoradian and K.Mølmer, Aging of a quantum battery, Phys. Rev. A100(4), 043833 (2019)
CrossRef
ADS
Google scholar
|
[10] |
K. V.Hovhannisyan, M.Perarnau-Llobet, M.Huber, and A.Acín, Entanglement generation is not necessary for optimal work extraction, Phys. Rev. Lett.111(24), 240401 (2013)
CrossRef
ADS
Google scholar
|
[11] |
F. T.Tabesh, F. H.Kamin, and S.Salimi, Environment-mediated charging process of quantum batteries, arXiv: 2005.12823 [quant-ph] (2020)
CrossRef
ADS
Google scholar
|
[12] |
F.Campaioli, F. A.Pollock, F. C.Binder, L.Céleri, J.Goold, S.Vinjanampathy, and K.Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett.118(15), 150601 (2017)
CrossRef
ADS
Google scholar
|
[13] |
S.Gherardini, F.Campaioli, F.Caruso, and F. C.Binder, Stabilizing open quantum batteries by sequential measurements, Phys. Rev. Research2(1), 013095 (2020)
CrossRef
ADS
Google scholar
|
[14] |
R.Alicki and M.Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E87(4), 042123 (2013)
CrossRef
ADS
Google scholar
|
[15] |
J.Monsel, M.Fellous-Asiani, B.Huard, and A.Auffèves, The energetic cost of work extraction, Phys. Rev. Lett.124(13), 130601 (2020)
|
[16] |
F. H.Kamin, F. T.Tabesh, S.Salimi, F.Kheirandish, and A. C.Santos, Non-Markovian effects on charging and self-discharging process of quantum batteries, New J. Phys.22(8), 083007 (2020)
CrossRef
ADS
Google scholar
|
[17] |
D.Ferraro, M.Campisi, G. M.Andolina, V.Pellegrini, and M.Polini, High-power collective charging of a solid-state quantum battery, Phys. Rev. Lett.120(11), 117702 (2018)
CrossRef
ADS
Google scholar
|
[18] |
X.Zhang and M.blaauboer, Enhanced energy transfer in a Dicke quantum battery, arXiv: 1812.10139 [quant-ph] (2018)
|
[19] |
G. M.Andolina, M.Keck, A.Mari, M.Campisi, V.Giovannetti, and M.Polini, Extractable work, the role of correlations, and asymptotic freedom in quantum batteries, Phys. Rev. Lett.122(4), 047702 (2019)
CrossRef
ADS
Google scholar
|
[20] |
F. C.Binder, S.Vinjanampathy, K.Modi, and J.Goold, Quantacell: Powerful charging of quantum batteries, New J. Phys.17(7), 075015 (2015)
CrossRef
ADS
Google scholar
|
[21] |
A.Crescente, M.Carrega, M.Sassetti, and D.Ferraro, Charging and energy fluctuations of a driven quantum battery, New J. Phys.22(6), 063057 (2020)
CrossRef
ADS
Google scholar
|
[22] |
S.Julià-Farré, T.Salamon, A.Riera, M. N.Bera, and M.Lewenstein, Bounds on the capacity and power of quantum batteries, Phys. Rev. Research2(2), 023113 (2020)
CrossRef
ADS
Google scholar
|
[23] |
B.Mohan and A. K.Pati, Reverse quantum speed limit: How slow quantum battery can discharge? arXiv: 2006.14523 [quant-ph] (2020)
CrossRef
ADS
Google scholar
|
[24] |
W.Niedenzu, V.Mukherjee, A.Ghosh, A. G.Kofman, and G.Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics, Nat. Commun.9(1), 165 (2018)
CrossRef
ADS
Google scholar
|
[25] |
F.Caravelli, G.Coulter-De Wit, L. P.García-Pintos, and A.Hamma, Random quantum batteries, Phys. Rev. Research2(2), 023095 (2020)
CrossRef
ADS
Google scholar
|
[26] |
T. P.Le, J.Levinsen, K.Modi, M. M.Parish, and F. A.Pollock, Spin-chain model of a many-body quantum battery, Phys. Rev. A97(2), 022106 (2018)
CrossRef
ADS
Google scholar
|
[27] |
S.Ghosh, T.Chanda, and A.Sen(De), Enhancement in the performance of a quantum battery by ordered and disordered interactions, Phys. Rev. A101(3), 032115 (2020)
CrossRef
ADS
Google scholar
|
[28] |
F.Zhao, F. Q.Dou, and Q.Zhao, Quantum battery of interacting spins with environmental noise, Phys. Rev. A103(3), 033715 (2021)
CrossRef
ADS
Google scholar
|
[29] |
D.Rossini, G. M.Andolina, and M.Polini, Many-body localized quantum batteries, Phys. Rev. B100(11), 115142 (2019)
CrossRef
ADS
Google scholar
|
[30] |
S.Zakavati, F. T.Tabesh, and S.Salimi, Bounds on charging power of open quantum batteries, arXiv: 2003.09814 [quant-ph] (2020)
CrossRef
ADS
Google scholar
|
[31] |
S.Ghosh, T.Chanda, S.Mal, and A. S.De, Fast charging of quantum battery assisted by noise, arXiv: 2005.12859 [quant-ph] (2020)
CrossRef
ADS
Google scholar
|
[32] |
A. C.Santos, A.Saguia, and M. S.Sarandy, Stable and charge-switchable quantum batteries, Phys. Rev. E101(6), 062114 (2020)
CrossRef
ADS
Google scholar
|
[33] |
D.Rossini, G. M.Andolina, D.Rosa, M.Carrega, and M.Polini, Quantum charging supremacy via Sachdevye–Kitaev batteries, arXiv: 1912.07234 [condmat.str-el] (2019)
|
[34] |
D.Rosa, D.Rossini, G. M.Andolina,, M.Polini, and M.Carrega, Ultra stable charging of fastest scrambling quantum batteries, arXiv: 1912.07247 [condmat.str-el] (2019)
CrossRef
ADS
Google scholar
|
[35] |
Y. Y.Zhang, T. R.Yang, L.Fu, and X.Wang, Powerful harmonic charging in a quantum battery, Phys. Rev. E99(5), 052106 (2019)
CrossRef
ADS
Google scholar
|
[36] |
G. M.Andolina, D.Farina, A.Mari, V.Pellegrini, V.Giovannetti, and M.Polini, Charger-mediated energy transfer in exactly solvable models for quantum batteries, Phys. Rev. B98(20), 205423 (2018)
CrossRef
ADS
Google scholar
|
[37] |
G. M.Andolina, M.Keck, A.Mari, V.Giovannetti, and M.Polini, Quantum versus classical many-body batteries, Phys. Rev. B99(20), 205437 (2019)
CrossRef
ADS
Google scholar
|
[38] |
J. Chen,L. Zhan,L. Shao,X. Zhang,Y. Zhang, and X. Wang, Charging quantum batteries with a general harmonic driving field, Ann. Phys. 532(4), 1900487 (2020)
CrossRef
ADS
Google scholar
|
[39] |
A. C. Santos,B. Çakmak,S. Campbell, and N. T. Zinner, Stable adiabatic quantum batteries, Phys. Rev. E 100(3), 032107 (2019)
CrossRef
ADS
Google scholar
|
[40] |
F. Q. Dou,Y. J. Wang, and J. A. Sun, Closed-loop three-level charged quantum battery, EPL (Europhysics Letters) 131(4), 43001 (2020)
CrossRef
ADS
Google scholar
|
[41] |
N. V. Vitanov,A. A. Rangelov,B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)
CrossRef
ADS
Google scholar
|
[42] |
K. Bergmann,H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70(3), 1003 (1998)
CrossRef
ADS
Google scholar
|
[43] |
B. W. Shore, Picturing stimulated Raman adiabatic passage: A STIRAP tutorial, Adv. Opt. Photonics 9(3), 563 (2017)
CrossRef
ADS
Google scholar
|
[44] |
X. Chen,I. Lizuain,A. Ruschhaupt,D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)
CrossRef
ADS
Google scholar
|
[45] |
D. Guéry-Odelin,A. Ruschhaupt,A. Kiely,E. Torrontegui,S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)
CrossRef
ADS
Google scholar
|
[46] |
M. Theisen,F. Petiziol,S. Carretta,P. Santini, and S. Wimberger, Superadiabatic driving of a three-level quantum system, Phys. Rev. A 96(1), 013431 (2017)
CrossRef
ADS
Google scholar
|
[47] |
F. Dou,J. Liu, and L. Fu, High-fidelity superadiabatic population transfer of a two-level system with a linearly chirped Gaussian pulse, EPL (Europhysics Letters) 116(6), 60014 (2016)
CrossRef
ADS
Google scholar
|
[48] |
M. V. Berry, Transitionless quantum driving, J. Phys. A Math. Theor. 42(36), 365303 (2009)
CrossRef
ADS
Google scholar
|
[49] |
M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107(46), 9937 (2003)
CrossRef
ADS
Google scholar
|
[50] |
A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)
CrossRef
ADS
Google scholar
|
[51] |
L. Giannelli and E. Arimondo, Three-level superadiabatic quantum driving, Phys. Rev. A 89(3), 033419 (2014)
CrossRef
ADS
Google scholar
|
[52] |
N. V. Vitanov and M. Drewsen, Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity, Phys. Rev. Lett. 122(17), 173202 (2019)
CrossRef
ADS
Google scholar
|
[53] |
S. Li,P. Shen,T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)
CrossRef
ADS
Google scholar
|
[54] |
A. Vepsäläinen,S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv. 5(2), eaau5999 (2019)
CrossRef
ADS
Google scholar
|
[55] |
A. Barfuss,J. Kölbl,L. Thiel,J. Teissier,M. Kasperczyk, and P. Maletinsky, Phase-controlled coherent dynamics of a single spin under closed-contour interaction, Nat. Phys. 14(11), 1087 (2018)
CrossRef
ADS
Google scholar
|
[56] |
J. Kölbl,A. Barfuss,M. S. Kasperczyk,L. Thiel,A. A. Clerk,H. Ribeiro, and P. Maletinsky, Initialization of single spin dressed states using shortcuts to adiabaticity, Phys. Rev. Lett. 122(9), 090502 (2019)
CrossRef
ADS
Google scholar
|
[57] |
J. Zhang,J. H. Shim,I. Niemeyer,T. Taniguchi,T. Teraji,H. Abe,S. Onoda,T. Yamamoto,T. Ohshima,J. Isoya, and D. Suter, Experimental implementation of assisted quantum adiabatic passage in a single spin, Phys. Rev. Lett. 110(24), 240501 (2013)
CrossRef
ADS
Google scholar
|
[58] |
J. F. Schaff,X. L. Song,P. Capuzzi,P. Vignolo, and G. Labeyrie, Shortcut to adiabaticity for an interacting Bose–Einstein condensate, EPL (Europhysics Letters) 93(2), 23001 (2011)
CrossRef
ADS
Google scholar
|
[59] |
Y. X. Du,Z. T. Liang,Y. C. Li,X. X. Yue,Q. X. Lv,W. Huang,X. Chen,H. Yan, and S. L. Zhu, Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms, Nat. Commun. 7(1), 12479 (2016)
CrossRef
ADS
Google scholar
|
[60] |
L. F. C. Moraes,A. Saguia,A. C. Santos, and M. S. Sarandy, Charging power and stability of always-on transitionless driven quantum batteries, arXiv: 2012.05855 [quant-ph] (2020)
CrossRef
ADS
Google scholar
|
[61] |
A. E. Allahverdyan,R. Balian, and T. M. Nieuwenhuizen, Maximal work extraction from finite quantum systems, EPL (Europhysics Letters) 67(4), 565 (2004)
CrossRef
ADS
Google scholar
|
[62] |
M. Alimuddin,T. Guha, and P. Parashar, Structure of passive states and its implication in charging quantum batteries, Phys. Rev. E 102(2), 022106 (2020)
CrossRef
ADS
Google scholar
|
[63] |
B. Akmak, Ergotropy from coherences in an open quantum system, arXiv: 2005.08489 [quant-ph] (2020)
CrossRef
ADS
Google scholar
|
[64] |
K. Ito and G. Watanabe, Collectively enhanced high-power and high-capacity charging of quantum batteries via quantum heat engines, arXiv: 2008.07089 [quant-ph] (2020)
|
[65] |
F. Tacchino,T. F. F. Santos,D. Gerace,M. Campisi, and M. F. Santos, Non-equilibrium steady states as resources for quantum heat engines, arXiv: 2007.04463 [quant-ph] (2020)
|
[66] |
J. R. Kuklinski,U. Gaubatz,F. T. Hioe, and K. Bergmann, Adiabatic population transfer in a three-level system driven by delayed laser pulses, Phys. Rev. A 40(11), 6741 (1989)
CrossRef
ADS
Google scholar
|
[67] |
F. Petiziol,E. Arimondo,L. Giannelli,F. Mintert, and S. Wimberger, Optimized three-level quantum transfers based on frequency-modulated optical excitations, Sci. Rep. 10(1), 2185 (2020)
CrossRef
ADS
Google scholar
|
[68] |
A. Vepsäläinen and G. S. Paraoanu, Simulating spin chains using a superconducting circuit: Gauge invariance, supera-diabatic transport, and broken time-reversal symmetry, Adv. Quantum Technol. 3(4), 1900121 (2020)
CrossRef
ADS
Google scholar
|
[69] |
C. K. Hu,J. Qiu,P. J. P. Souza,J. Yuan,Y. Zhou,L. Zhang,J. Chu,X. Pan,L. Hu,J. Li,Y. Xu,Y. Zhong,S. Liu,F. Yan,D. Tan,R. Bachelard,C. J. Villas-Boas,A. C. Santos, and D. Yu, Optimal charging of a superconducting quantum battery, arXiv: 2108.04298 [quant-ph] (2021)
|
[70] |
J. H. Zhang and F. Q. Dou, High-fidelity formation of deeply bound ultracold molecules via non-Hermitian shortcut to adiabaticity, New J. Phys. 23(6), 063001 (2021)
CrossRef
ADS
Google scholar
|
[71] |
H. Hu,S. Qi, and J. Jing, Fast and stable charging via a shortcut to adiabaticity, arXiv: 2104.12143 [quant-ph] (2021)
|
/
〈 | 〉 |