Isotope separation of Potassium with a magneto–optical combined method

Zixuan Zeng , Shangjin Li , Bo Yan

Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 32502

PDF (1704KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 32502 DOI: 10.1007/s11467-021-1129-y
RESEARCH ARTICLE

Isotope separation of Potassium with a magneto–optical combined method

Author information +
History +
PDF (1704KB)

Abstract

Due to the similar physical and chemical properties, isotopes are usually hard to separate. On the other hand, the isotope shifts are very well separated in a high-resolution spectrum, making them possible to be addressed individually by lasers, thus separated. Here we report such an isotope separation experiment with Potassium atoms. The isotopes are independently optical pumped to the desired spin states, and then separated with a Stern–Gerlach scheme. A micro-capillary oven is used to collimate the atomic beam, and a Halbach-type magnet array is used to deflect the desired atoms. Finally, the 40K is enriched by two orders of magnitude. This magneto–optical combined method provides an effective way to separate isotopes and can be extended to other elements if the relevant optical pumping scheme is feasible.

Graphical abstract

Keywords

cold atom / isotope separation / optical pumping

Cite this article

Download citation ▾
Zixuan Zeng, Shangjin Li, Bo Yan. Isotope separation of Potassium with a magneto–optical combined method. Front. Phys., 2022, 17(3): 32502 DOI:10.1007/s11467-021-1129-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. A. Lyakhov , H. J. Lee , and A. N. Pechen , Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method, Separ. Purif. Tech. 176, 402 (2017)

[2]

T. R. Mazur , B. Klappauf , and M. G. Raizen , Demonstration of magnetically activated and guided isotope separation, Nat. Phys. 10 (8), 601 (2014)

[3]

H. M. Zhang and S. G. Li , Deep carbon recycling and isotope tracing: Review and prospect, Sci. China Earth Sci. 55, 1929 (2012)

[4]

E. J. Bartelink and L. A. Chesson , Recent applications of isotope analysis to forensic anthropology, Forensic Sci. Res. 4 (1), 29 (2019)

[5]

D. J. Wilkinson , Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism, Mass Spectrom. Rev. 37 (1), 57 (2018)

[6]

R. A. Muller , Radioisotope dating wit a cyclotron, Science 196 (4289), 489 (1977)

[7]

C. Y. Chen , Y. M. Li , K. Bailey , T. P. O’Connor , L. Young , and Z. Lu , Ultrasensitive isotope trace analyses with a magneto–optical trap, Science 286 (5442), 1139 (1999)

[8]

A. L. Yergey and A. K. Yergey , Preparative scale mass spectrometry: A brief history of the calutron, J. Am. Soc. Mass Spectrom. 8 (9), 943 (1997)

[9]

L. O. Love , Electromagnetic separation of isotopes at Oak Ridge, Science 182 (4110), 343 (1973)

[10]

V. S. Letokhov , Laser isotope separation, Nature 277 (5698), 605 (1979)

[11]

T. Arisawa , Y. Maruyama , Y. Suzuki , and K. Shiba , Lithium isotope separation by laser, Appl. Phys. B 28, 73 (1982)

[12]

J. A. Paisner , Atomic vapor laser isotope separation, Appl. Phys. B 46 (3), 253 (1988)

[13]

P. Greenland , Laser isotope separation, Contemp. Phys. 31 (6), 405 (1990)

[14]

T. Kieck , H. Dorrer , C. E. Dullmann , V. Gadelshin , F. Schneider , and K. Wendt , Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project, Nucl. Instrum. Methods Phys. Res. A 945, 162602 (2019)

[15]

A. Bernhardt , Isotope separation by laser deflection of an atomic beam, Appl. Phys. (Berl.) 9 (1), 19 (1976)

[16]

L. Li , Y. Wang , and M. Li , Separation of Li isotopes by laser defection of atomic beams, Chin. Phys. 3 (1), 155 (1983)

[17]

X. Zhu , G. Huang , G. Mei , and D. Yang , Laser isotope enrichment of lithium by magnetic deflection of a polarized atomic beam, J. Phys. At. Mol. Opt. Phys. 25 (15), 3307 (1992)

[18]

M. Jerkins , I. Chavez , U. Even , and M. G. Raizen , Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82 (3), 033414 (2010)

[19]

M. G. Raizen and B. Klappauf , Magnetically activated and guided isotope separation, New J. Phys. 14 (2), 023059 (2012)

[20]

B. DeMarco and D. Jin , Onset of Fermi degeneracy in a trapped atomic gas, Science 285 (5434), 1703 (1999)

[21]

E. Haller , J. Hudson , A. Kelly , D. A. Cotta , B. Peaudecerf , G. D. Bruce , and S. Kuhr , Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys. 11 (9), 738 (2015)

[22]

L. W. Cheuk , M. A. Nichols , M. Okan , T. Gersdorf , V. V. Ramasesh , W. S. Bakr , T. Lompe , and M. W. Zwierlein , Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett. 114 (19), 193001 (2015)

[23]

M. A. Nichols , L. W. Cheuk , M. Okan , T. R. Hartke , E. Mendez , T. Senthil , E. Khatami , H. Zhang , and M. W. Zwierlein , Spin transport in a Mott insulator of ultracold fermions, Science 363 (6425), 383 (2019)

[24]

T. G. Tiecke , Properties of potassium, University of Amsterdam, The Netherlands, Thesis 2010, pp 12–14

[25]

R. Senaratne , S. V. Rajagopal , Z. A. Geiger , K. M. Fujiwara , V. Lebedev , and D. M. Weld , Effusive atomic oven nozzle design using an aligned microcapillary array, Rev. Sci. Instrum. 86 (2), 023105 (2015)

[26]

P. Rosenberg , Collision cross sections of K atoms and K2 molecules in gases, Phys. Rev. 55 (12), 1267 (1939)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1704KB)

646

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/