Isotope separation of Potassium with a magneto–optical combined method
Zixuan Zeng, Shangjin Li, Bo Yan
Isotope separation of Potassium with a magneto–optical combined method
Due to the similar physical and chemical properties, isotopes are usually hard to separate. On the other hand, the isotope shifts are very well separated in a high-resolution spectrum, making them possible to be addressed individually by lasers, thus separated. Here we report such an isotope separation experiment with Potassium atoms. The isotopes are independently optical pumped to the desired spin states, and then separated with a Stern–Gerlach scheme. A micro-capillary oven is used to collimate the atomic beam, and a Halbach-type magnet array is used to deflect the desired atoms. Finally, the 40K is enriched by two orders of magnitude. This magneto–optical combined method provides an effective way to separate isotopes and can be extended to other elements if the relevant optical pumping scheme is feasible.
cold atom / isotope separation / optical pumping
[1] |
K. A. Lyakhov , H. J. Lee , and A. N. Pechen , Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method, Separ. Purif. Tech. 176, 402 (2017)
CrossRef
ADS
Google scholar
|
[2] |
T. R. Mazur , B. Klappauf , and M. G. Raizen , Demonstration of magnetically activated and guided isotope separation, Nat. Phys. 10 (8), 601 (2014)
CrossRef
ADS
Google scholar
|
[3] |
H. M. Zhang and S. G. Li , Deep carbon recycling and isotope tracing: Review and prospect, Sci. China Earth Sci. 55, 1929 (2012)
CrossRef
ADS
Google scholar
|
[4] |
E. J. Bartelink and L. A. Chesson , Recent applications of isotope analysis to forensic anthropology, Forensic Sci. Res. 4 (1), 29 (2019)
CrossRef
ADS
Google scholar
|
[5] |
D. J. Wilkinson , Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism, Mass Spectrom. Rev. 37 (1), 57 (2018)
CrossRef
ADS
Google scholar
|
[6] |
R. A. Muller , Radioisotope dating wit a cyclotron, Science 196 (4289), 489 (1977)
CrossRef
ADS
Google scholar
|
[7] |
C. Y. Chen , Y. M. Li , K. Bailey , T. P. O’Connor , L. Young , and Z. Lu , Ultrasensitive isotope trace analyses with a magneto–optical trap, Science 286 (5442), 1139 (1999)
CrossRef
ADS
Google scholar
|
[8] |
A. L. Yergey and A. K. Yergey , Preparative scale mass spectrometry: A brief history of the calutron, J. Am. Soc. Mass Spectrom. 8 (9), 943 (1997)
CrossRef
ADS
Google scholar
|
[9] |
L. O. Love , Electromagnetic separation of isotopes at Oak Ridge, Science 182 (4110), 343 (1973)
CrossRef
ADS
Google scholar
|
[10] |
V. S. Letokhov , Laser isotope separation, Nature 277 (5698), 605 (1979)
CrossRef
ADS
Google scholar
|
[11] |
T. Arisawa , Y. Maruyama , Y. Suzuki , and K. Shiba , Lithium isotope separation by laser, Appl. Phys. B 28, 73 (1982)
CrossRef
ADS
Google scholar
|
[12] |
J. A. Paisner , Atomic vapor laser isotope separation, Appl. Phys. B 46 (3), 253 (1988)
CrossRef
ADS
Google scholar
|
[13] |
P. Greenland , Laser isotope separation, Contemp. Phys. 31 (6), 405 (1990)
CrossRef
ADS
Google scholar
|
[14] |
T. Kieck , H. Dorrer , C. E. Dullmann , V. Gadelshin , F. Schneider , and K. Wendt , Highly efficient isotope separation and ion implantation of 163Ho for the ECHo project, Nucl. Instrum. Methods Phys. Res. A 945, 162602 (2019)
CrossRef
ADS
Google scholar
|
[15] |
A. Bernhardt , Isotope separation by laser deflection of an atomic beam, Appl. Phys. (Berl.) 9 (1), 19 (1976)
CrossRef
ADS
Google scholar
|
[16] |
L. Li , Y. Wang , and M. Li , Separation of Li isotopes by laser defection of atomic beams, Chin. Phys. 3 (1), 155 (1983)
|
[17] |
X. Zhu , G. Huang , G. Mei , and D. Yang , Laser isotope enrichment of lithium by magnetic deflection of a polarized atomic beam, J. Phys. At. Mol. Opt. Phys. 25 (15), 3307 (1992)
CrossRef
ADS
Google scholar
|
[18] |
M. Jerkins , I. Chavez , U. Even , and M. G. Raizen , Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82 (3), 033414 (2010)
CrossRef
ADS
Google scholar
|
[19] |
M. G. Raizen and B. Klappauf , Magnetically activated and guided isotope separation, New J. Phys. 14 (2), 023059 (2012)
CrossRef
ADS
Google scholar
|
[20] |
B. DeMarco and D. Jin , Onset of Fermi degeneracy in a trapped atomic gas, Science 285 (5434), 1703 (1999)
CrossRef
ADS
Google scholar
|
[21] |
E. Haller , J. Hudson , A. Kelly , D. A. Cotta , B. Peaudecerf , G. D. Bruce , and S. Kuhr , Single-atom imaging of fermions in a quantum-gas microscope, Nat. Phys. 11 (9), 738 (2015)
CrossRef
ADS
Google scholar
|
[22] |
L. W. Cheuk , M. A. Nichols , M. Okan , T. Gersdorf , V. V. Ramasesh , W. S. Bakr , T. Lompe , and M. W. Zwierlein , Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett. 114 (19), 193001 (2015)
CrossRef
ADS
Google scholar
|
[23] |
M. A. Nichols , L. W. Cheuk , M. Okan , T. R. Hartke , E. Mendez , T. Senthil , E. Khatami , H. Zhang , and M. W. Zwierlein , Spin transport in a Mott insulator of ultracold fermions, Science 363 (6425), 383 (2019)
CrossRef
ADS
Google scholar
|
[24] |
T. G. Tiecke , Properties of potassium, University of Amsterdam, The Netherlands, Thesis 2010, pp 12–14
|
[25] |
R. Senaratne , S. V. Rajagopal , Z. A. Geiger , K. M. Fujiwara , V. Lebedev , and D. M. Weld , Effusive atomic oven nozzle design using an aligned microcapillary array, Rev. Sci. Instrum. 86 (2), 023105 (2015)
CrossRef
ADS
Google scholar
|
[26] |
P. Rosenberg , Collision cross sections of K atoms and K2 molecules in gases, Phys. Rev. 55 (12), 1267 (1939)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |