Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

X. Wu , P. Z. Zhao

Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 31502

PDF (1526KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 31502 DOI: 10.1007/s11467-021-1128-z
RESEARCH ARTICLE

Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

Author information +
History +
PDF (1526KB)

Abstract

Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.

Graphical abstract

Keywords

nonadiabatic geometric quantum computation / dynamical decoupling / XXZ Hamiltonian

Cite this article

Download citation ▾
X. Wu, P. Z. Zhao. Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian. Front. Phys., 2022, 17(3): 31502 DOI:10.1007/s11467-021-1128-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. W. Shor , Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5), 1484 (1997)

[2]

L. K. Grover , Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79 (2), 325 (1997)

[3]

M. J. Bremner , C. M. Dawson , J. L. Dodd , A. Gilchrist , A. W. Harrow , D. Mortimer , M. A. Nielsen , and T. J. Osborne , Practical scheme for quantum computation with any two-qubit entangling gate, Phys. Rev. Lett. 89 (24), 247902 (2002)

[4]

M. V. Berry , Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392 (1802), 45 (1984)

[5]

F. Wilczek and A. Zee , Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52 (24), 2111 (1984)

[6]

J. A. Jones , V. Vedral , A. Ekert , and G. Castagnoli , Geometric quantum computation using nuclear magnetic resonance, Nature 403 (6772), 869 (2000)

[7]

P. Zanardi and M. Rasetti , Holonomic quantum computation, Phys. Lett. A 264 (2-3), 94 (1999)

[8]

L. M. Duan , J. I. Cirac , and P. Zoller , Geometric manipulation of trapped ions for quantum computation, Science 292 (5522), 1695 (2001)

[9]

M. Born and V. Fock , Beweis des adiabatensatzes, Z. Phys. 51 (3-4), 165 (1928)

[10]

A. Messiah , Quantum Mechanics, North-Holland, Amsterdam, Vol. 2, (1962)

[11]

D. M. Tong , Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation, Phys. Rev. Lett. 104 (12), 120401 (2010)

[12]

X. B. Wang and M. Keiji , Nonadiabatic conditional geometric phase shift with NMR, Phys. Rev. Lett. 87 (9), 097901 (2001)

[13]

S. L. Zhu and Z. D. Wang , Implementation of universal quantum gates based on nonadiabatic geometric phases, Phys. Rev. Lett. 89 (9), 097902 (2002)

[14]

Y. Aharonov and J. Anandan , Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58 (16), 1593 (1987)

[15]

E. Sjöqvist , D. M. Tong , L. Mauritz Andersson , B. Hessmo , M. Johansson , and K. Singh , Non-adiabatic holonomic quantum computation, New J. Phys. 14 (10), 103035 (2012)

[16]

G. F. Xu , J. Zhang , D. M. Tong , E. Sjöqvist , and L. C. Kwek , Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109 (17), 170501 (2012)

[17]

J. Anandan , Non-adiabatic non-abelian geometric phase, Phys. Lett. A 133 (4-5), 171 (1988)

[18]

S. L. Zhu and Z. D. Wang , Unconventional geometric quantum computation, Phys. Rev. Lett. 91 (18), 187902 (2003)

[19]

A. Friedenauer and E. Sjöqvist , Noncyclic geometric quantum computation, Phys. Rev. A 67 (2), 024303 (2003)

[20]

P. Solinas , P. Zanardi , N. Zanghì , and F. Rossi , Nonadiabatic geometrical quantum gates in semiconductor quantum dots, Phys. Rev. A 67 (5), 052309 (2003)

[21]

S. B. Zheng , Unconventional geometric quantum phase gates with a cavity QED system, Phys. Rev. A 70 (5), 052320 (2004)

[22]

X. D. Zhang , S. L. Zhu , L. Hu , and Z. D. Wang , Nonadiabatic geometric quantum computation using a single-loop scenario, Phys. Rev. A 71 (1), 014302 (2005)

[23]

C. Y. Chen , M. Feng , X. L. Zhang , and K. L. Gao , Strongdriving-assisted unconventional geometric logic gate in cavity QED, Phys. Rev. A 73 (3), 032344 (2006)

[24]

L. X. Cen , Z. D. Wang , and S. J. Wang , Scalable quantum computation in decoherence-free subspaces with trapped ions, Phys. Rev. A 74 (3), 032321 (2006)

[25]

X. L. Feng , Z. S. Wang , C. F. Wu , L. C. Kwek , C. H. Lai , and C. H. Oh , Scheme for unconventional geometric quantum computation in cavity QED, Phys. Rev. A 75 (5), 052312 (2007)

[26]

C. F. Wu , Z. S. Wang , X. L. Feng , H. S. Goan , L. C. Kwek , C. H. Lai , and C. H. Oh , Unconventional geometric quantum computation in a two-mode cavity, Phys. Rev. A 76 (2), 024302 (2007)

[27]

K. Kim , C. F. Roos , L. Aolita , H. Häffner , V. Nebendahl , and R. Blatt , Geometric phase gate on an optical transition for ion trap quantum computation, Phys. Rev. A 77, 050303(R) (2008)

[28]

X. L. Feng , C. F. Wu , H. Sun , and C. H. Oh , Geometric entangling gates in decoherence-free subspaces with minimal requirements, Phys. Rev. Lett. 103 (20), 200501 (2009)

[29]

Y. Ota and Y. Kondo , Composite pulses in NMR as nonadiabatic geometric quantum gates, Phys. Rev. A 80 (2), 024302 (2009)

[30]

J. T. Thomas , M. Lababidi , and M. Z. Tian , Robustness of single-qubit geometric gate against systematic error, Phys. Rev. A 84 (4), 042335 (2011)

[31]

G. F. Xu and G. L. Long , Protecting geometric gates by dynamical decoupling, Phys. Rev. A 90 (2), 022323 (2014)

[32]

X. Wu and P. Z. Zhao , Universal nonadiabatic geometric gates protected by dynamical decoupling, Phys. Rev. A 102 (3), 032627 (2020)

[33]

C. F. Sun , G. C. Wang , C. F. Wu , H. D. Liu , X. L. Feng , J. L. Chen , and K. Xue , Non-adiabatic holonomic quantum computation in linear system-bath coupling, Sci. Rep. 6 (1), 20292 (2016)

[34]

G. F. Xu and G. L. Long , Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces, Sci. Rep. 4 (1), 6814 (2015)

[35]

P. Z. Zhao , G. F. Xu , and D. M. Tong , Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases, Phys. Rev. A 94 (6), 062327 (2016)

[36]

P. Z. Zhao , X. D. Cui , G. F. Xu , E. Sjöqvist , and D. M. Tong , Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96 (5), 052316 (2017)

[37]

T. Chen and Z. Y. Xue , Nonadiabatic geometric quantum computation with parametrically tunable coupling, Phys. Rev. Appl. 10 (5), 054051 (2018)

[38]

B. J. Liu , X. K. Song , Z. Y. Xue , X. Wang , and M. H. Yung , Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123 (10), 100501 (2019)

[39]

Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101 (3), 032322 (2020)

[40]

Y. H. Kang and Y. Xia , Unconventional geometric phase gate of transmon qubits with inverse Hamiltonian engineering, IEEE J. Sel. Top. Quantum Electron. 26 (3), 6700107 (2020)

[41]

K. Z. Li , P. Z. Zhao , and D. M. Tong , Approach to realizing nonadiabatic geometric gates with prescribed evolution paths, Phys. Rev. Res. 2 (2), 023295 (2020)

[42]

J. Xu , S. Li , T. Chen , and Z. Y. Xue , Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15 (4), 41503 (2020)

[43]

F. Q. Guo , J. L. Wu , X. Y. Zhu , Z. Jin , Y. Zeng , S. Zhang , L. L. Yan , M. Feng , and S. L. Su , Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations, Phys. Rev. A 102 (6), 062410 (2020)

[44]

M. R. Yun , F. Q. Guo , M. Li , L. L. Yan , M. Feng , Y. X. Li , and S. L. Su , Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons, Opt. Express 29 (6), 8737 (2021)

[45]

D. Leibfried , B. DeMarco , V. Meyer , D. Lucas , M. Barrett , J. Britton , W. M. Itano , B. Jelenković , C. Langer , T. Rosenband , and D. J. Wineland , Experimental demonstration of a robust , high-fidelity geometric two ion-qubit phase gate, Nature 422 (6930), 412 (2003)

[46]

J. F. Du , P. Zou , and Z. D. Wang , Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer, Phys. Rev. A 74, 020302(R) (2006)

[47]

P. Z. Zhao , Z. J. Z. Dong , Z. X. Zhang , G. P. Guo , D. M. Tong , and Y. Yin , Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit, Sci. China Phys. Mech. Astron. 64 (5), 250362 (2021)

[48]

Y. Xu , Z. Hua , T. Chen , X. Pan , X. Li , J. Han , W. Cai , Y. Ma , H. Wang , Y. P. Song , Z. Y. Xue , and L. Sun , Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124 (23), 230503 (2020)

[49]

L. Viola , E. Knill , and S. Lloyd , Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82 (12), 2417 (1999)

[50]

C. N. Yang and C. P. Yang , One-dimensional chain of anisotropic spin-spin interactions (I): Proof of Bethe’s hypothesis for ground state in a finite system, Phys. Rev. 150 (1), 321 (1966)

[51]

J. D. Johnson and M. McCoy , Low-temperature thermodynamics of the |∆| ≥ 1 Heisenberg-Ising ring, Phys. Rev. A 6 (4), 1613 (1972)

[52]

F. C. Alcaraz and A. L. Malvezzi , Critical and off-critical properties of the XXZ chain in external homogeneous and staggered magnetic fields, J. Phys. A 28 (6), 1521 (1995)

[53]

N. Canosa and R. Rossignoli , Global entanglement in XXZ chains, Phys. Rev. A 73 (2), 022347 (2006)

[54]

O. Breunig , M. Garst , E. Sela , B. Buldmann , P. Becker , L. Bohaty , R. Müller , and T. Lorenz , Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field, Phys. Rev. Lett. 111 (18), 187202 (2013)

[55]

U. Glaser , H. Büttner , and H. Fehske , Entanglement and correlation in anisotropic quantum spin systems, Phys. Rev. A 68 (3), 032318 (2003)

[56]

E. Altman , W. Hofstetter , E. Demler , and M. D. Lukin , Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003)

[57]

J. Zhou , Y. Hu , X. B. Zou , and G. C. Guo , Ground-state preparation of arbitrarily multipartite Dicke states in the one-dimensional ferromagnetic spin-1/2 chain, Phys. Rev. A 84 (4), 042324 (2011)

[58]

A. V. Gorshkov , S. R. Manmana , G. Chen , J. Ye , E. Demler , M. D. Lukin , and A. M. Rey , Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107 (11), 115301 (2011)

[59]

A. V. Gorshkov , S. R. Manmana , G. Chen , E. Demler , M. D. Lukin , and A. M. Rey , Quantum magnetism with polar alkali-metal dimers, Phys. Rev. A 84 (3), 033619 (2011)

[60]

L. M. Duan , E. Demler , and M. D. Lukin , Controlling spin exchange interactions of ultracold atoms in optical lattices, Phys. Rev. Lett. 91 (9), 090402 (2003)

[61]

S. Trotzky , P. Cheinet , S. Fölling , M. Feld , U. Schnorrberger , A. M. Rey , A. Polkovnikov , E. A. Demler , M. D. Lukin , and I. Bloch , Time-resolved observation and control of super-exchange interactions with ultracold atoms in optical lattices, Science 319 (5861), 295 (2008)

[62]

Y. Makhlin , G. Schön , and A. Shnirman , Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73 (2), 357 (2001)

[63]

J. Siewert and R. Fazio , Quantum algorithms for Josephson networks, Phys. Rev. Lett. 87 (25), 257905 (2001)

[64]

D. V. Averin and C. Bruder , Variable electrostatic transformer: Controllable coupling of two charge qubits, Phys. Rev. Lett. 91 (5), 057003 (2003)

[65]

C. Testelin , F. Bernardot , B. Eble , and M. Chamarro , Hole-spin dephasing time associated with hyperfine interaction in quantum dots, Phys. Rev. B 79 (19), 195440 (2009)

[66]

Y. P. Shim , S. Oh , X. D. Hu , and M. Friesen , Controllable anisotropic exchange coupling between spin qubits in quantum dots, Phys. Rev. Lett. 106 (18), 180503 (2011)

[67]

B. Urbaszek , X. Marie , T. Amand , O. Krebs , P. Voisin , P. Maletinsky , A. Högele , and A. Imamoglu , Nuclear spin physics in quantum dots: An optical investigation, Rev. Mod. Phys. 85 (1), 79 (2013)

[68]

L. Viola , S. Lloyd , and E. Knill , Universal control of decoupled quantum systems, Phys. Rev. Lett. 83 (23), 4888 (1999)

[69]

G. F. Xu , D. M. Tong , and E. Sjöqvist , Path-shortening realizations of nonadiabatic holonomic gates, Phys. Rev. A 98 (5), 052315 (2018)

[70]

P. Z. Zhao , X. Wu , and D. M. Tong , Dynamical-decoupling protected nonadiabatic holonomic quantum computation, Phys. Rev. A 103 (1), 012205 (2021)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1526KB)

729

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/