Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

X. Wu, P. Z. Zhao

PDF(1526 KB)
PDF(1526 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 31502. DOI: 10.1007/s11467-021-1128-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian

Author information +
History +

Abstract

Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.

Graphical abstract

Keywords

nonadiabatic geometric quantum computation / dynamical decoupling / XXZ Hamiltonian

Cite this article

Download citation ▾
X. Wu, P. Z. Zhao. Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian. Front. Phys., 2022, 17(3): 31502 https://doi.org/10.1007/s11467-021-1128-z

References

[1]
P. W. Shor , Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5), 1484 (1997)
CrossRef ADS Google scholar
[2]
L. K. Grover , Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79 (2), 325 (1997)
CrossRef ADS Google scholar
[3]
M. J. Bremner , C. M. Dawson , J. L. Dodd , A. Gilchrist , A. W. Harrow , D. Mortimer , M. A. Nielsen , and T. J. Osborne , Practical scheme for quantum computation with any two-qubit entangling gate, Phys. Rev. Lett. 89 (24), 247902 (2002)
CrossRef ADS Google scholar
[4]
M. V. Berry , Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392 (1802), 45 (1984)
CrossRef ADS Google scholar
[5]
F. Wilczek and A. Zee , Appearance of gauge structure in simple dynamical systems, Phys. Rev. Lett. 52 (24), 2111 (1984)
CrossRef ADS Google scholar
[6]
J. A. Jones , V. Vedral , A. Ekert , and G. Castagnoli , Geometric quantum computation using nuclear magnetic resonance, Nature 403 (6772), 869 (2000)
CrossRef ADS Google scholar
[7]
P. Zanardi and M. Rasetti , Holonomic quantum computation, Phys. Lett. A 264 (2-3), 94 (1999)
CrossRef ADS Google scholar
[8]
L. M. Duan , J. I. Cirac , and P. Zoller , Geometric manipulation of trapped ions for quantum computation, Science 292 (5522), 1695 (2001)
CrossRef ADS Google scholar
[9]
M. Born and V. Fock , Beweis des adiabatensatzes, Z. Phys. 51 (3-4), 165 (1928)
CrossRef ADS Google scholar
[10]
A. Messiah , Quantum Mechanics, North-Holland, Amsterdam, Vol. 2, (1962)
[11]
D. M. Tong , Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation, Phys. Rev. Lett. 104 (12), 120401 (2010)
CrossRef ADS Google scholar
[12]
X. B. Wang and M. Keiji , Nonadiabatic conditional geometric phase shift with NMR, Phys. Rev. Lett. 87 (9), 097901 (2001)
CrossRef ADS Google scholar
[13]
S. L. Zhu and Z. D. Wang , Implementation of universal quantum gates based on nonadiabatic geometric phases, Phys. Rev. Lett. 89 (9), 097902 (2002)
CrossRef ADS Google scholar
[14]
Y. Aharonov and J. Anandan , Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58 (16), 1593 (1987)
CrossRef ADS Google scholar
[15]
E. Sjöqvist , D. M. Tong , L. Mauritz Andersson , B. Hessmo , M. Johansson , and K. Singh , Non-adiabatic holonomic quantum computation, New J. Phys. 14 (10), 103035 (2012)
CrossRef ADS Google scholar
[16]
G. F. Xu , J. Zhang , D. M. Tong , E. Sjöqvist , and L. C. Kwek , Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109 (17), 170501 (2012)
CrossRef ADS Google scholar
[17]
J. Anandan , Non-adiabatic non-abelian geometric phase, Phys. Lett. A 133 (4-5), 171 (1988)
CrossRef ADS Google scholar
[18]
S. L. Zhu and Z. D. Wang , Unconventional geometric quantum computation, Phys. Rev. Lett. 91 (18), 187902 (2003)
CrossRef ADS Google scholar
[19]
A. Friedenauer and E. Sjöqvist , Noncyclic geometric quantum computation, Phys. Rev. A 67 (2), 024303 (2003)
CrossRef ADS Google scholar
[20]
P. Solinas , P. Zanardi , N. Zanghì , and F. Rossi , Nonadiabatic geometrical quantum gates in semiconductor quantum dots, Phys. Rev. A 67 (5), 052309 (2003)
CrossRef ADS Google scholar
[21]
S. B. Zheng , Unconventional geometric quantum phase gates with a cavity QED system, Phys. Rev. A 70 (5), 052320 (2004)
CrossRef ADS Google scholar
[22]
X. D. Zhang , S. L. Zhu , L. Hu , and Z. D. Wang , Nonadiabatic geometric quantum computation using a single-loop scenario, Phys. Rev. A 71 (1), 014302 (2005)
CrossRef ADS Google scholar
[23]
C. Y. Chen , M. Feng , X. L. Zhang , and K. L. Gao , Strongdriving-assisted unconventional geometric logic gate in cavity QED, Phys. Rev. A 73 (3), 032344 (2006)
CrossRef ADS Google scholar
[24]
L. X. Cen , Z. D. Wang , and S. J. Wang , Scalable quantum computation in decoherence-free subspaces with trapped ions, Phys. Rev. A 74 (3), 032321 (2006)
CrossRef ADS Google scholar
[25]
X. L. Feng , Z. S. Wang , C. F. Wu , L. C. Kwek , C. H. Lai , and C. H. Oh , Scheme for unconventional geometric quantum computation in cavity QED, Phys. Rev. A 75 (5), 052312 (2007)
CrossRef ADS Google scholar
[26]
C. F. Wu , Z. S. Wang , X. L. Feng , H. S. Goan , L. C. Kwek , C. H. Lai , and C. H. Oh , Unconventional geometric quantum computation in a two-mode cavity, Phys. Rev. A 76 (2), 024302 (2007)
CrossRef ADS Google scholar
[27]
K. Kim , C. F. Roos , L. Aolita , H. Häffner , V. Nebendahl , and R. Blatt , Geometric phase gate on an optical transition for ion trap quantum computation, Phys. Rev. A 77, 050303(R) (2008)
CrossRef ADS Google scholar
[28]
X. L. Feng , C. F. Wu , H. Sun , and C. H. Oh , Geometric entangling gates in decoherence-free subspaces with minimal requirements, Phys. Rev. Lett. 103 (20), 200501 (2009)
CrossRef ADS Google scholar
[29]
Y. Ota and Y. Kondo , Composite pulses in NMR as nonadiabatic geometric quantum gates, Phys. Rev. A 80 (2), 024302 (2009)
CrossRef ADS Google scholar
[30]
J. T. Thomas , M. Lababidi , and M. Z. Tian , Robustness of single-qubit geometric gate against systematic error, Phys. Rev. A 84 (4), 042335 (2011)
CrossRef ADS Google scholar
[31]
G. F. Xu and G. L. Long , Protecting geometric gates by dynamical decoupling, Phys. Rev. A 90 (2), 022323 (2014)
CrossRef ADS Google scholar
[32]
X. Wu and P. Z. Zhao , Universal nonadiabatic geometric gates protected by dynamical decoupling, Phys. Rev. A 102 (3), 032627 (2020)
CrossRef ADS Google scholar
[33]
C. F. Sun , G. C. Wang , C. F. Wu , H. D. Liu , X. L. Feng , J. L. Chen , and K. Xue , Non-adiabatic holonomic quantum computation in linear system-bath coupling, Sci. Rep. 6 (1), 20292 (2016)
CrossRef ADS Google scholar
[34]
G. F. Xu and G. L. Long , Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces, Sci. Rep. 4 (1), 6814 (2015)
CrossRef ADS Google scholar
[35]
P. Z. Zhao , G. F. Xu , and D. M. Tong , Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases, Phys. Rev. A 94 (6), 062327 (2016)
CrossRef ADS Google scholar
[36]
P. Z. Zhao , X. D. Cui , G. F. Xu , E. Sjöqvist , and D. M. Tong , Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96 (5), 052316 (2017)
CrossRef ADS Google scholar
[37]
T. Chen and Z. Y. Xue , Nonadiabatic geometric quantum computation with parametrically tunable coupling, Phys. Rev. Appl. 10 (5), 054051 (2018)
CrossRef ADS Google scholar
[38]
B. J. Liu , X. K. Song , Z. Y. Xue , X. Wang , and M. H. Yung , Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123 (10), 100501 (2019)
CrossRef ADS Google scholar
[39]
Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101 (3), 032322 (2020)
CrossRef ADS Google scholar
[40]
Y. H. Kang and Y. Xia , Unconventional geometric phase gate of transmon qubits with inverse Hamiltonian engineering, IEEE J. Sel. Top. Quantum Electron. 26 (3), 6700107 (2020)
CrossRef ADS Google scholar
[41]
K. Z. Li , P. Z. Zhao , and D. M. Tong , Approach to realizing nonadiabatic geometric gates with prescribed evolution paths, Phys. Rev. Res. 2 (2), 023295 (2020)
CrossRef ADS Google scholar
[42]
J. Xu , S. Li , T. Chen , and Z. Y. Xue , Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15 (4), 41503 (2020)
CrossRef ADS Google scholar
[43]
F. Q. Guo , J. L. Wu , X. Y. Zhu , Z. Jin , Y. Zeng , S. Zhang , L. L. Yan , M. Feng , and S. L. Su , Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations, Phys. Rev. A 102 (6), 062410 (2020)
CrossRef ADS Google scholar
[44]
M. R. Yun , F. Q. Guo , M. Li , L. L. Yan , M. Feng , Y. X. Li , and S. L. Su , Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons, Opt. Express 29 (6), 8737 (2021)
CrossRef ADS Google scholar
[45]
D. Leibfried , B. DeMarco , V. Meyer , D. Lucas , M. Barrett , J. Britton , W. M. Itano , B. Jelenković , C. Langer , T. Rosenband , and D. J. Wineland , Experimental demonstration of a robust , high-fidelity geometric two ion-qubit phase gate, Nature 422 (6930), 412 (2003)
CrossRef ADS Google scholar
[46]
J. F. Du , P. Zou , and Z. D. Wang , Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer, Phys. Rev. A 74, 020302(R) (2006)
CrossRef ADS Google scholar
[47]
P. Z. Zhao , Z. J. Z. Dong , Z. X. Zhang , G. P. Guo , D. M. Tong , and Y. Yin , Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit, Sci. China Phys. Mech. Astron. 64 (5), 250362 (2021)
CrossRef ADS Google scholar
[48]
Y. Xu , Z. Hua , T. Chen , X. Pan , X. Li , J. Han , W. Cai , Y. Ma , H. Wang , Y. P. Song , Z. Y. Xue , and L. Sun , Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys. Rev. Lett. 124 (23), 230503 (2020)
CrossRef ADS Google scholar
[49]
L. Viola , E. Knill , and S. Lloyd , Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82 (12), 2417 (1999)
CrossRef ADS Google scholar
[50]
C. N. Yang and C. P. Yang , One-dimensional chain of anisotropic spin-spin interactions (I): Proof of Bethe’s hypothesis for ground state in a finite system, Phys. Rev. 150 (1), 321 (1966)
CrossRef ADS Google scholar
[51]
J. D. Johnson and M. McCoy , Low-temperature thermodynamics of the |∆| ≥ 1 Heisenberg-Ising ring, Phys. Rev. A 6 (4), 1613 (1972)
CrossRef ADS Google scholar
[52]
F. C. Alcaraz and A. L. Malvezzi , Critical and off-critical properties of the XXZ chain in external homogeneous and staggered magnetic fields, J. Phys. A 28 (6), 1521 (1995)
CrossRef ADS Google scholar
[53]
N. Canosa and R. Rossignoli , Global entanglement in XXZ chains, Phys. Rev. A 73 (2), 022347 (2006)
CrossRef ADS Google scholar
[54]
O. Breunig , M. Garst , E. Sela , B. Buldmann , P. Becker , L. Bohaty , R. Müller , and T. Lorenz , Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field, Phys. Rev. Lett. 111 (18), 187202 (2013)
CrossRef ADS Google scholar
[55]
U. Glaser , H. Büttner , and H. Fehske , Entanglement and correlation in anisotropic quantum spin systems, Phys. Rev. A 68 (3), 032318 (2003)
CrossRef ADS Google scholar
[56]
E. Altman , W. Hofstetter , E. Demler , and M. D. Lukin , Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003)
CrossRef ADS Google scholar
[57]
J. Zhou , Y. Hu , X. B. Zou , and G. C. Guo , Ground-state preparation of arbitrarily multipartite Dicke states in the one-dimensional ferromagnetic spin-1/2 chain, Phys. Rev. A 84 (4), 042324 (2011)
CrossRef ADS Google scholar
[58]
A. V. Gorshkov , S. R. Manmana , G. Chen , J. Ye , E. Demler , M. D. Lukin , and A. M. Rey , Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107 (11), 115301 (2011)
CrossRef ADS Google scholar
[59]
A. V. Gorshkov , S. R. Manmana , G. Chen , E. Demler , M. D. Lukin , and A. M. Rey , Quantum magnetism with polar alkali-metal dimers, Phys. Rev. A 84 (3), 033619 (2011)
CrossRef ADS Google scholar
[60]
L. M. Duan , E. Demler , and M. D. Lukin , Controlling spin exchange interactions of ultracold atoms in optical lattices, Phys. Rev. Lett. 91 (9), 090402 (2003)
CrossRef ADS Google scholar
[61]
S. Trotzky , P. Cheinet , S. Fölling , M. Feld , U. Schnorrberger , A. M. Rey , A. Polkovnikov , E. A. Demler , M. D. Lukin , and I. Bloch , Time-resolved observation and control of super-exchange interactions with ultracold atoms in optical lattices, Science 319 (5861), 295 (2008)
CrossRef ADS Google scholar
[62]
Y. Makhlin , G. Schön , and A. Shnirman , Quantum-state engineering with Josephson-junction devices, Rev. Mod. Phys. 73 (2), 357 (2001)
CrossRef ADS Google scholar
[63]
J. Siewert and R. Fazio , Quantum algorithms for Josephson networks, Phys. Rev. Lett. 87 (25), 257905 (2001)
CrossRef ADS Google scholar
[64]
D. V. Averin and C. Bruder , Variable electrostatic transformer: Controllable coupling of two charge qubits, Phys. Rev. Lett. 91 (5), 057003 (2003)
CrossRef ADS Google scholar
[65]
C. Testelin , F. Bernardot , B. Eble , and M. Chamarro , Hole-spin dephasing time associated with hyperfine interaction in quantum dots, Phys. Rev. B 79 (19), 195440 (2009)
CrossRef ADS Google scholar
[66]
Y. P. Shim , S. Oh , X. D. Hu , and M. Friesen , Controllable anisotropic exchange coupling between spin qubits in quantum dots, Phys. Rev. Lett. 106 (18), 180503 (2011)
CrossRef ADS Google scholar
[67]
B. Urbaszek , X. Marie , T. Amand , O. Krebs , P. Voisin , P. Maletinsky , A. Högele , and A. Imamoglu , Nuclear spin physics in quantum dots: An optical investigation, Rev. Mod. Phys. 85 (1), 79 (2013)
CrossRef ADS Google scholar
[68]
L. Viola , S. Lloyd , and E. Knill , Universal control of decoupled quantum systems, Phys. Rev. Lett. 83 (23), 4888 (1999)
CrossRef ADS Google scholar
[69]
G. F. Xu , D. M. Tong , and E. Sjöqvist , Path-shortening realizations of nonadiabatic holonomic gates, Phys. Rev. A 98 (5), 052315 (2018)
CrossRef ADS Google scholar
[70]
P. Z. Zhao , X. Wu , and D. M. Tong , Dynamical-decoupling protected nonadiabatic holonomic quantum computation, Phys. Rev. A 103 (1), 012205 (2021)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1526 KB)

Accesses

Citations

Detail

Sections
Recommended

/