Biorthogonal quantum criticality in non-Hermitian many-body systems
Gaoyong Sun, Jia-Chen Tang, Su-Peng Kou
Biorthogonal quantum criticality in non-Hermitian many-body systems
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is investigated by the second derivative of the ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.
biorthogonal quantum criticality / non-Hermitian systems / fidelity susceptibility
[1] |
S. Sachdev , Quantum Phase Transitions, Cambridge University Press, 1999
|
[2] |
M. Levin and X. G. Wen , Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (11), 110405 (2006)
CrossRef
ADS
Google scholar
|
[3] |
M. E. Fisher and M. N. Barber , Scaling theory for finitesize effects in the critical region, Phys. Rev. Lett. 28, 1516 (1972)
CrossRef
ADS
Google scholar
|
[4] |
M. E. Fisher , The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46 (4), 597 (1974)
CrossRef
ADS
Google scholar
|
[5] |
E. J. Bergholtz , J. C. Budich , and F. K. Kunst , Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93 (1), 015005 (2021)
CrossRef
ADS
Google scholar
|
[6] |
Y. Ashida , Z. Gong , and M. Ueda , Non-Hermitian physics, Adv. Phys. 69 (3), 249 (2020)
CrossRef
ADS
Google scholar
|
[7] |
T. E. Lee , Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116 (13), 133903 (2016)
CrossRef
ADS
Google scholar
|
[8] |
S. Yao , and Z. Wang , Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121 (8), 086803 (2018)
CrossRef
ADS
Google scholar
|
[9] |
F. K. Kunst , E. Edvardsson , J. C. Budich , and E. J. Bergholtz , Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121 (2), 026808 (2018)
CrossRef
ADS
Google scholar
|
[10] |
Y. Xiong , Why does bulk boundary correspondence fail in some non-Hermitian topological models, J. Phys. Commun. 2 (3), 035043 (2018)
CrossRef
ADS
Google scholar
|
[11] |
Z. Gong , Y. Ashida , K. Kawabata , K. Takasan , S. Higashikawa , and M. Ueda , Topological phases of nonHermitian systems, Phys. Rev. X 8 (3), 031079 (2018)
CrossRef
ADS
Google scholar
|
[12] |
V. M. M. Alvarez , J. E. B. Vargas , and L. E. F. F. Torres , Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 121401(R) (2018)
CrossRef
ADS
Google scholar
|
[13] |
K. Yokomizo and S. Murakami , Non-Bloch band theory of non-Hermitian systems, Phys. Rev. Lett. 123 (6), 066404 (2019)
CrossRef
ADS
Google scholar
|
[14] |
N. Okuma , K. Kawabata , K. Shiozaki , and M. Sato , Topological origin of non-Hermitian skin effects, Phys. Rev. Lett. 124 (8), 086801 (2020)
CrossRef
ADS
Google scholar
|
[15] |
K. Zhang , Z. Yang , and C. Fang , Correspondence between winding numbers and skin modes in non-Hermitian systems, Phys. Rev. Lett. 125 (12), 126402 (2020)
CrossRef
ADS
Google scholar
|
[16] |
Z. Yang , K. Zhang , C. Fang , and J. Hu , Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory, Phys. Rev. Lett. 125 (22), 226402 (2020)
CrossRef
ADS
Google scholar
|
[17] |
X.-R. Wang , C.-X. Guo , and S.-P. Kou , Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems, Phys. Rev. B 101, 121116(R) (2020)
CrossRef
ADS
Google scholar
|
[18] |
H. Jiang , R. Lü , and S. Chen , Topological invariants , zero mode edge states and finite size effect for a generalized non-reciprocal Su–Schrieffer–Heeger model, Eur. Phys. J. B 93 (7), 125 (2020)
CrossRef
ADS
Google scholar
|
[19] |
S. Weidemann , M. Kremer , T. Helbig , T. Hofmann , A. Stegmaier , M. Greiter , R. Thomale , and A. Szameit , Topological funneling of light, Science 368 (6488), 311 (2020)
CrossRef
ADS
Google scholar
|
[20] |
L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , and P. Xue , Observation of non-Hermitian bulk-boundary correspondence in quantum dynamics, Nat. Phys. 16, 761 (2020)
CrossRef
ADS
Google scholar
|
[21] |
D. S. Borgnia , A. J. Kruchkov , and R. J. Slager , NonHermitian boundary modes and topology, Phys. Rev. Lett. 124 (5), 056802 (2020)
CrossRef
ADS
Google scholar
|
[22] |
W. Heiss , The physics of exceptional points, J. Phys. A Math. Theor. 45 (44), 444016 (2012)
CrossRef
ADS
Google scholar
|
[23] |
V. Kozii and L. Fu , Non-Hermitian topological theory of finite-lifetime quasiparticles: Prediction of bulk Fermi arc due to exceptional point, arXiv: 1708.05841 (2017)
|
[24] |
H. Hodaei , A. U. Hassan , S. Wittek , H. Garcia-Gracia , R. El-Ganainy , D. N. Christodoulides , and M. Khajavikhan , Enhanced sensitivity at higher-order exceptional points, Nature 548 (7666), 187 (2017)
CrossRef
ADS
Google scholar
|
[25] |
H. Zhou , C. Peng , Y. Yoon , C. W. Hsu , K. A. Nelson , L. Fu , J. D. Joannopoulos , M. Soljacic , and B. Zhen , Observation of bulk Fermi arc and polarization half charge from paired exceptional points, Science 359 (6379), 1009 (2018)
CrossRef
ADS
Google scholar
|
[26] |
M. A. Miri and A. Alu , Exceptional points in optics and photonics, Science 363 (6422), eaar7709 (2019)
CrossRef
ADS
Google scholar
|
[27] |
J. H. Park , A. Ndao , W. Cai , L. Y. Hsu , A. Kodigala , T. Lepetit , Y. H. Lo , and B. Kanté , Observation of plasmonic exceptional points, arXiv: 1904.01073 (2019)
|
[28] |
Z. Yang and J. Hu , Non-Hermitian Hopf-link exceptional line semimetals, Phys. Rev. B 99, 081102(R) (2019)
CrossRef
ADS
Google scholar
|
[29] |
S. Özdemir , S. Rotter , F. Nori , and L. Yang , Parity–time symmetry and exceptional points in photonics, Nat. Mater. 18 (8), 783 (2019)
CrossRef
ADS
Google scholar
|
[30] |
B. Dóra , M. Heyl , and R. Moessner , The Kibble–Zurek mechanism at exceptional points, Nat. Commun. 10 (1), 2254 (2019)
CrossRef
ADS
Google scholar
|
[31] |
Y. R. Zhang , Z. Z. Zhang , J. Q. Yuan , M. Kang , and J. Chen , High-order exceptional points in non-Hermitian Moiré lattices, Front. Phys. 14 (5), 53603 (2019)
CrossRef
ADS
Google scholar
|
[32] |
L. Jin , H. C. Wu , B. B. Wei , and Z. Song , Hybrid exceptional point created from type-Ⅲ Dirac point, Phys. Rev. B 101 (4), 045130 (2020)
CrossRef
ADS
Google scholar
|
[33] |
L. Xiao , T. Deng , K. Wang , Z. Wang , W. Yi , and P. Xue , Observation of non-Bloch parity-time symmetry and exceptional points, Phys. Rev. Lett. 126 (23), 230402 (2021)
CrossRef
ADS
Google scholar
|
[34] |
N. Matsumoto , K. Kawabata , Y. Ashida , S. Furukawa , and M. Ueda , Continuous phase transition without gap closing in non-Hermitian quantum many-body systems, Phys. Rev. Lett. 125 (26), 260601 (2020)
CrossRef
ADS
Google scholar
|
[35] |
M. L. Yang , H. Wang , C. X. Guo , X. R. Wang , G. Sun , and S. P. Kou , Anomalous spontaneous symmetry breaking in non-Hermitian systems with biorthogonal Z2-symmetry, arXiv: 2006.10278 (2020)
|
[36] |
L. Jin and Z. Song , Scaling behavior and phase diagram of a PT-symmetric non-Hermitian Bose–Hubbard system, Ann. Phys. 330, 142 (2013)
CrossRef
ADS
Google scholar
|
[37] |
Y. Ashida , S. Furukawa , and M. Ueda , Parity–timesymmetric quantum critical phenomena, Nat. Commun. 8 (1), 15791 (2017)
CrossRef
ADS
Google scholar
|
[38] |
L. Herviou , N. Regnault , and J. H. Bardarson , Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models, SciPost Physics 7 (5), 069 (2019)
CrossRef
ADS
Google scholar
|
[39] |
P. Y. Chang , J. S. You , X. Wen , and S. Ryu , Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory, Phys. Rev. Res. 2 (3), 033069 (2020)
CrossRef
ADS
Google scholar
|
[40] |
S. Mu , C. H. Lee , L. Li , and J. Gong , Emergent Fermi surface in a many-body non-Hermitian fermionic chain, Phys. Rev. B 102, 081115(R) (2020)
CrossRef
ADS
Google scholar
|
[41] |
E. Lee , H. Lee , and B.-J. Yang , Many-body approach to non-Hermitian physics in fermionic systems, Phys. Rev. B 101, 121109(R) (2020)
CrossRef
ADS
Google scholar
|
[42] |
L. Pan , X. Chen , Y. Chen , and H. Zhai , Non-Hermitian linear response theory, Nat. Phys. 16 (7), 767 (2020)
CrossRef
ADS
Google scholar
|
[43] |
L. Pan , X. Wang , X. Cui , and S. Chen , Interactioninduced dynamical PT-symmetry breaking in dissipative Fermi–Hubbard models, Phys. Rev. A 102 (2), 023306 (2020)
CrossRef
ADS
Google scholar
|
[44] |
Z. Xu and S. Chen , Topological Bose–Mott insulators in one-dimensional non-Hermitian superlattices, Phys. Rev. B 102 (3), 035153 (2020)
CrossRef
ADS
Google scholar
|
[45] |
D. W. Zhang , Y. L. Chen , G. Q. Zhang , L. J. Lang , Z. Li , and S. L. Zhu , Skin superfluid, topological Mott insulators, and asymmetric dynamics in an interacting non-Hermitian Aubry–André–Harper model, Phys. Rev. B 101 (23), 235150 (2020)
CrossRef
ADS
Google scholar
|
[46] |
C. H. Lee , Many-body topological and skin states without open boundaries, arXiv: 2006.01182 (2020)
|
[47] |
H. Shackleton and M. S. Scheurer , Protection of paritytime symmetry in topological many-body systems: NonHermitian toric code and fracton models, Phys. Rev. Res. 2 (3), 033022 (2020)
CrossRef
ADS
Google scholar
|
[48] |
T. Liu , J. J. He , T. Yoshida , Z. L. Xiang , and F. Nori , Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102 (23), 235151 (2020)
CrossRef
ADS
Google scholar
|
[49] |
K. Yang , S. C. Morampudi , and E. J. Bergholtz , Exceptional spin liquids from couplings to the environment, Phys. Rev. Lett. 126 (7), 077201 (2021)
CrossRef
ADS
Google scholar
|
[50] |
R. Hanai , A. Edelman , Y. Ohashi , and P. B. Littlewood , Non-Hermitian phase transition from a polariton Bose– Einstein condensate to a photon laser, Phys. Rev. Lett. 122 (18), 185301 (2019)
CrossRef
ADS
Google scholar
|
[51] |
R. Hamazaki , K. Kawabata , and M. Ueda , NonHermitian many-body localization, Phys. Rev. Lett. 123 (9), 090603 (2019)
CrossRef
ADS
Google scholar
|
[52] |
W. Xi , Z. H. Zhang , Z. C. Gu , and W. Q. Chen , Classification of topological phases in one dimensional interacting non-Hermitian systems and emergent unitarity, Sci. Bull. (Beijing) 66 (17), 1731 (2021)
CrossRef
ADS
Google scholar
|
[53] |
K. Yamamoto , M. Nakagawa , K. Adachi , K. Takasan , M. Ueda , and N. Kawakami , Theory of non-Hermitian fermionic superfluidity with a complex-valued interaction, Phys. Rev. Lett. 123 (12), 123601 (2019)
CrossRef
ADS
Google scholar
|
[54] |
R. Hanai and P. B. Littlewood , Critical fluctuations at a many-body exceptional point, Phys. Rev. Res. 2 (3), 033018 (2020)
CrossRef
ADS
Google scholar
|
[55] |
R. Arouca , C. H. Lee , and C. M. Smith , Unconventional scaling at non-Hermitian critical points, Phys. Rev. B 102 (24), 245145 (2020)
CrossRef
ADS
Google scholar
|
[56] |
P. Zanardi and N. Paunkovic , Ground state overlap and quantum phase transitions, Phys. Rev. E 74 (3), 031123 (2006)
CrossRef
ADS
Google scholar
|
[57] |
L. Campos Venuti and P. Zanardi , Quantum critical scaling of the geometric tensors, Phys. Rev. Lett. 99 (9), 095701 (2007)
CrossRef
ADS
Google scholar
|
[58] |
W. L. You , Y. W. Li , and S. J. Gu , Fidelity, dynamic structure factor, and susceptibility in critical phenomena, Phys. Rev. E 76 (2), 022101 (2007)
CrossRef
ADS
Google scholar
|
[59] |
A. F. Albuquerque , F. Alet , C. Sire , and S. Capponi , Quantum critical scaling of fidelity susceptibility, Phys. Rev. B 81 (6), 064418 (2010)
CrossRef
ADS
Google scholar
|
[60] |
S. J. Gu , Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B 24 (23), 4371 (2010)
CrossRef
ADS
Google scholar
|
[61] |
G. Sun , Fidelity susceptibility study of quantum longrange antiferromagnetic Ising chain, Phys. Rev. A 96 (4), 043621 (2017)
CrossRef
ADS
Google scholar
|
[62] |
Z. Zhu , G. Sun , W. L. You , and D. N. Shi , Fidelity and criticality of a quantum Ising chain with long-range interactions, Phys. Rev. A 98 (2), 023607 (2018)
CrossRef
ADS
Google scholar
|
[63] |
B. B. Wei and X. C. Lv , Fidelity susceptibility in the quantum Rabi model, Phys. Rev. A 97 (1), 013845 (2018)
CrossRef
ADS
Google scholar
|
[64] |
B. B. Wei , Fidelity susceptibility in one-dimensional disordered lattice models, Phys. Rev. A 99 (4), 042117 (2019)
CrossRef
ADS
Google scholar
|
[65] |
S. Chen , L. Wang , Y. Hao , and Y. Wang , Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition, Phys. Rev. A 77 (3), 032111 (2008)
CrossRef
ADS
Google scholar
|
[66] |
S. J. Gu , H. M. Kwok , W. Q. Ning , and H. Q. Lin , Fidelity susceptibility, scaling, and universality in quantum critical phenomena, Phys. Rev. B 77 (24), 245109 (2008)
CrossRef
ADS
Google scholar
|
[67] |
S. Yang , S. J. Gu , C. P. Sun , and H. Q. Lin , Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model, Phys. Rev. A 78 (1), 012304 (2008)
CrossRef
ADS
Google scholar
|
[68] |
H. M. Kwok , W. Q. Ning , S. J. Gu , and H. Q. Lin , Quantum criticality of the Lipkin–Meshkov–Glick model in terms of fidelity susceptibility, Phys. Rev. E 78 (3), 032103 (2008)
CrossRef
ADS
Google scholar
|
[69] |
L. Gong and P. Tong , Fidelity, fidelity susceptibility, and von Neumann entropy to characterize the phase diagram of an extended Harper model, Phys. Rev. B 78 (11), 115114 (2008)
CrossRef
ADS
Google scholar
|
[70] |
W. C. Yu , H. M. Kwok , J. Cao , and S. J. Gu , Fidelity susceptibility in the two-dimensional transverse-field Ising and XXZ models, Phys. Rev. E 80 (2), 021108 (2009)
CrossRef
ADS
Google scholar
|
[71] |
D. Schwandt , F. Alet , and S. Capponi , Quantum Monte Carlo simulations of fidelity at magnetic quantum phase transitions, Phys. Rev. Lett. 103 (17), 170501 (2009)
CrossRef
ADS
Google scholar
|
[72] |
Q. Luo , J. Zhao , and X. Wang , Fidelity susceptibility of the anisotropic XY model: The exact solution, Phys. Rev. E 98 (2), 022106 (2018)
CrossRef
ADS
Google scholar
|
[73] |
M. M. Rams and B. Damski , Quantum fidelity in the thermodynamic limit, Phys. Rev. Lett. 106 (5), 055701 (2011)
CrossRef
ADS
Google scholar
|
[74] |
S. H. Li , Q. Q. Shi , Y. H. Su , J. H. Liu , Y. W. Dai , and H. Q. Zhou , Tensor network states and ground-state fidelity for quantum spin ladders, Phys. Rev. B 86 (6), 064401 (2012)
CrossRef
ADS
Google scholar
|
[75] |
V. Mukherjee , A. Dutta , and D. Sen , Quantum fidelity for one-dimensional Dirac fermions and two-dimensional Kitaev model in the thermodynamic limit, Phys. Rev. B 85 (2), 024301 (2012)
CrossRef
ADS
Google scholar
|
[76] |
B. Damski , Fidelity susceptibility of the quantum Ising model in a transverse field: The exact solution, Phys. Rev. E 87 (5), 052131 (2013)
CrossRef
ADS
Google scholar
|
[77] |
J. Carrasquilla , S. R. Manmana , and M. Rigol , Scaling of the gap , Scaling of the gap, fidelity susceptibility, and Bloch oscillations across the superfluid-to-Mott-insulator transition in the one-dimensional Bose–Hubbard model, Phys. Rev. A 87 (4), 043606 (2013)
CrossRef
ADS
Google scholar
|
[78] |
M. Łącki , B. Damski , and J. Zakrzewski , Numerical studies of ground-state fidelity of the Bose–Hubbard model, Phys. Rev. A 89 (3), 033625 (2014)
CrossRef
ADS
Google scholar
|
[79] |
G. Sun and T. Vekua , Topological quasi-one-dimensional state of interacting spinless electrons, Phys. Rev. B 93 (20), 205137 (2016)
CrossRef
ADS
Google scholar
|
[80] |
M.-F. Yang , Ground-state fidelity in one-dimensional gapless models, Phys. Rev. B 76, 180403(R) (2007)
CrossRef
ADS
Google scholar
|
[81] |
J. O. Fjærestad , Ground state fidelity of Luttinger liquids: A wavefunctional approach, J. Stat. Mech. 2008 (07), P07011 (2008)
CrossRef
ADS
Google scholar
|
[82] |
A. Langari and A. Rezakhani , Quantum renormalization group for ground-state fidelity, New J. Phys. 14 (5), 053014 (2012)
CrossRef
ADS
Google scholar
|
[83] |
G. Sun , A. K. Kolezhuk , and T. Vekua , Fidelity at Berezinskii–Kosterlitz–Thouless quantum phase transitions, Phys. Rev. B 91 (1), 014418 (2015)
CrossRef
ADS
Google scholar
|
[84] |
L. Cincio , M. M. Rams , J. Dziarmaga , and W. H. Zurek , Universal shift of the fidelity susceptibility peak away from the critical point of the Berezinskii–Kosterlitz–Thouless quantum phase transition, Phys. Rev. B 100, 081108(R) (2019)
CrossRef
ADS
Google scholar
|
[85] |
G. Sun , B. B. Wei , and S. P. Kou , Fidelity as a probe for a deconfined quantum critical point, Phys. Rev. B 100 (6), 064427 (2019)
CrossRef
ADS
Google scholar
|
[86] |
H. Jiang , C. Yang , and S. Chen , Topological invariants and phase diagrams for one-dimensional two-band nonHermitian systems without chiral symmetry, Phys. Rev. A 98 (5), 052116 (2018)
CrossRef
ADS
Google scholar
|
[87] |
C. Wang , M. L. Yang , C. X. Guo , X. M. Zhao , and S. P. Kou , Effective non-Hermitian physics for degenerate ground states of a non-Hermitian Ising model with RT symmetry, EPL (Europhysics Letters) 128 (4), 41001 (2020)
CrossRef
ADS
Google scholar
|
[88] |
C. X. Guo , X. R. Wang , and S. P. Kou , Non-Hermitian avalanche effect: Non-perturbative effect induced by local non-Hermitian perturbation on a Z2 topological order, EPL (Europhysics Letters) 131 (2), 27002 (2020)
CrossRef
ADS
Google scholar
|
[89] |
Y. Nishiyama , Imaginary-field-driven phase transition for the 2D Ising antiferromagnet: A fidelity-susceptibility approach, Physica A 555, 124731 (2020)
CrossRef
ADS
Google scholar
|
[90] |
Y. Nishiyama , Fidelity-susceptibility analysis of the honeycomb-lattice Ising antiferromagnet under the imaginary magnetic field, Eur. Phys. J. B 93 (9), 174 (2020)
CrossRef
ADS
Google scholar
|
[91] |
Y. C. Tzeng , C. Y. Ju , G. Y. Chen , and W. M. Huang , Hunting for the non-Hermitian exceptional points with fidelity susceptibility, Phys. Rev. Res. 3 (1), 013015 (2021)
CrossRef
ADS
Google scholar
|
[92] |
D. D. Solnyshkov , C. Leblanc , L. Bessonart , A. Nalitov , J. Ren , Q. Liao , F. Li , and G. Malpuech , Quantum metric and wave packets at exceptional points in non-Hermitian systems, Phys. Rev. B 103 (12), 125302 (2021)
CrossRef
ADS
Google scholar
|
[93] |
D. C. Brody , Biorthogonal quantum mechanics, J. Phys. A Math. Theor. 47 (3), 035305 (2014)
CrossRef
ADS
Google scholar
|
[94] |
M. M. Sternheim and J. F. Walker , Non-Hermitian Hamiltonians, decaying states, and perturbation theory, Phys. Rev. C 6 (1), 114 (1972)
CrossRef
ADS
Google scholar
|
[95] |
A. Mostafazadeh , Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43 (1), 205 (2002)
CrossRef
ADS
Google scholar
|
[96] |
A. Mostafazadeh , Pseudo-hermiticity versus PT-symmetry (Ⅱ): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43 (5), 2814 (2002)
CrossRef
ADS
Google scholar
|
[97] |
A. Mostafazadeh , Pseudo-hermiticity versus PT-symmetry (Ⅲ): Equivalence of pseudo-hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43 (8), 3944 (2002)
CrossRef
ADS
Google scholar
|
[98] |
Y. Y. Fu , Y. Fei , D. X. Dong , and Y. W. Liu , Photonic spin Hall effect in PT-symmetric metamaterials, Front. Phys. 14 (6), 62601 (2019)
CrossRef
ADS
Google scholar
|
[99] |
Y. Zhao , Equivariant PT-symmetric real Chern insulators, Front. Phys. 15 (1), 13603 (2020)
CrossRef
ADS
Google scholar
|
[100] |
Y. C. Chen , M. Gong , P. Xue , H. D. Yuan , and C. J. Zhang , Quantum deleting and cloning in a pseudounitary system, Front. Phys. 16 (5), 53601 (2021)
CrossRef
ADS
Google scholar
|
[101] |
A. Uhlmann , The “transition probability” in the state space of a ∗-algebra, Rep. Math. Phys. 9 (2), 273 (1976)
CrossRef
ADS
Google scholar
|
[102] |
M. Hauru and G. Vidal , Uhlmann fidelities from tensor networks, Phys. Rev. A 98 (4), 042316 (2018)
CrossRef
ADS
Google scholar
|
[103] |
G. Gehlen , Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field, J. Phys. Math. Gen. 24 (22), 5371 (1991)
CrossRef
ADS
Google scholar
|
[104] |
D. Bianchini , O. Castro-Alvaredo , B. Doyon , E. Levi , and F. Ravanini , Entanglement entropy of non-unitary conformal field theory, J. Phys. A Math. Theor. 48 (4), 04FT01 (2015)
CrossRef
ADS
Google scholar
|
[105] |
K. L. Zhang and Z. Song , Ising chain with topological degeneracy induced by dissipation, Phys. Rev. B 101 (24), 245152 (2020)
CrossRef
ADS
Google scholar
|
[106] |
J. Um , S. I. Lee , and B. J. Kim , Quantum phase transition and finite-size scaling of the one-dimensional Ising model, J. Korean Phys. Soc. 50, 285 (2007)
|
[107] |
W. L. You and W. L. Lu , Scaling of reduced fidelity susceptibility in the one-dimensional transverse-field XY model, Phys. Lett. A 373 (16), 1444 (2009)
CrossRef
ADS
Google scholar
|
[108] |
N. Hatano and H. Obuse , Delocalization of a nonHermitian quantum walk on random media in one dimension, Ann. Phys. 168615 (2021)
CrossRef
ADS
Google scholar
|
[109] |
T. Liu , S. Cheng , H. Guo , and G. Xianlong , Fate of Majorana zero modes, exact location of critical states, and unconventional real-complex transition in non-Hermitian quasiperiodic lattices, Phys. Rev. B 103 (10), 104203 (2021)
CrossRef
ADS
Google scholar
|
[110] |
Q. Lin , T. Li , L. Xiao , K. Wang , W. Yi , and P. Xue , Observation of non-Hermitian topological Anderson insulator in quantum dynamics, arXiv: 2108.01097 (2021)
|
/
〈 | 〉 |