Complex energy plane and topological invariant in non-Hermitian systems

Annan Fan, Shi-Dong Liang

PDF(1310 KB)
PDF(1310 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 33501. DOI: 10.1007/s11467-021-1122-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Complex energy plane and topological invariant in non-Hermitian systems

Author information +
History +

Abstract

Non-Hermitian systems as theoretical models of open or dissipative systems exhibit rich novel physical properties and fundamental issues in condensed matter physics. We propose a generalized local–global correspondence between the pseudo-boundary states in the complex energy plane and topological invariants of quantum states. We find that the patterns of the pseudo-boundary states in the complex energy plane mapped to the Brillouin zone are topological invariants against the parameter deformation. We demonstrate this approach by the non-Hermitian Chern insulator model. We give the consistent topological phases obtained from the Chern number and vorticity. We also find some novel topological invariants embedded in the topological phases of the Chern insulator model, which enrich the phase diagram of the non-Hermitian Chern insulators model beyond that predicted by the Chern number and vorticity. We also propose a generalized vorticity and its flipping index to understand physics behind this novel local–global correspondence and discuss the relationships between the local–global correspondence and the Chern number as well as the transformation between the Brillouin zone and the complex energy plane. These novel approaches provide insights to how topological invariants may be obtained from local information as well as the global property of quantum states, which is expected to be applicable in more generic non-Hermitian systems.

Graphical abstract

Keywords

topological invariant / Chern number / non-Hermitian system

Cite this article

Download citation ▾
Annan Fan, Shi-Dong Liang. Complex energy plane and topological invariant in non-Hermitian systems. Front. Phys., 2022, 17(3): 33501 https://doi.org/10.1007/s11467-021-1122-5

References

[1]
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , and D. N. Christodoulides , NonHermitian physics and PT symmetry, Nat. Phys. 14 (1), 11 (2018)
CrossRef ADS Google scholar
[2]
Z. Gong , Y. Ashida , K. Kawabata , K. Takasan , S. Higashikawa , and M. Ueda , Topological phases of nonHermitian systems, Phys. Rev. X 8 (3), 031079 (2018)
CrossRef ADS Google scholar
[3]
K. Kawabata , K. Shiozaki , M. Ueda , and M. Sato , Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9 (4), 041015 (2019)
CrossRef ADS Google scholar
[4]
M. He , H. Sun , and L. H. Qing , Topological insulator: Spintronics and quantum computations, Front. Phys. 14 (4), 43401 (2019)
CrossRef ADS Google scholar
[5]
V. Y. Chernyak , J. R. Klein , and N. A. Sinitsyn , Quantization and fractional quantization of currents in periodically driven stochastic systems (I): Average currents, J. Chem. Phys. 136 (15), 154107 (2012)
CrossRef ADS Google scholar
[6]
J. Qi , H. Liu , H. Jiang , and X. C. Xie , Dephasing effects in topological insulators, Front. Phys. 14 (4), 43403 (2019)
CrossRef ADS Google scholar
[7]
S. D. Liang and G. Y. Huang , Topological invariance and global Berry phase in non-Hermitian systems, Phys. Rev. A 87 (1), 012118 (2013)
CrossRef ADS Google scholar
[8]
A. Mostafazadeh , Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 07 (07), 1191 (2020)
CrossRef ADS Google scholar
[9]
A. Mostafazadeh , Energy observable for a quantum system with a dynamical Hilbert space and a global geometric extension of quantum theory, Phys. Rev. D 98 (4), 046022 (2018)
CrossRef ADS Google scholar
[10]
Y. Chen and H. Zhai , Hall conductance of a non-Hermitian Chern insulator, Phys. Rev. B 98 (24), 245130 (2018)
CrossRef ADS Google scholar
[11]
Y. X. Zhao , Equivariant PT-symmetric real Chern insulators, Front. Phys. 15 (1), 13603 (2020)
CrossRef ADS Google scholar
[12]
A. Fan , G. Y. Huang , and S. D. Liang , Complex Berry curvature pair and quantum Hall admittance in nonHermitian systems, J. Phys. Commun. 4 (11), 115006 (2020)
CrossRef ADS Google scholar
[13]
Q. Niu , Advances on topological materials, Front. Phys. 15 (4), 43601 (2020)
CrossRef ADS Google scholar
[14]
Y. Xu , New physics in old material: Topological and superconducting properties of stanene, Front. Phys. 15 (5), 53202 (2020)
CrossRef ADS Google scholar
[15]
M. Yang , X. L. Zhang , and W. M. Liu , Tunable topological quantum states in three- and two-dimensional materials, Front. Phys. 10 (2), 161 (2015)
CrossRef ADS Google scholar
[16]
K. Kawabata , K. Shiozaki , and M. Ueda , Anomalous helical edge states in a non-Hermitian Chern insulator, Phys. Rev. B 98 (16), 165148 (2018)
CrossRef ADS Google scholar
[17]
A. Ghatak and T. Das , New topological invariants in nonHermitian systems, J. Phys.: Condens. Matter 31, 263001 (2019)
CrossRef ADS Google scholar
[18]
H. Shen , B. Zhen , and L. Fu , Topological band theory for non-Hermitian Hamiltonians, Phys. Rev. Lett. 120 (14), 146402 (2018)
CrossRef ADS Google scholar
[19]
T. E. Lee , Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116 (13), 133903 (2016)
CrossRef ADS Google scholar
[20]
V. M. M. Alvarez , J. E. B. Vargas , and L. E. F. F. Torres , Torres, Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 121401(R) (2018)
CrossRef ADS Google scholar
[21]
V. M. M. Alvarez , J. E. B. Vargas , M. Berdakin , and L. E. F. F. Torres , Topological states of non-Hermitian systems, Eur. Phys. J. Spec. Top. 227 (12), 1295 (2018)
CrossRef ADS Google scholar
[22]
K. Kawabata , K. Shiozaki , and M. Ueda , Anomalous helical edge states in a non-Hermitian Chern insulator, Phys. Rev. B 98 (16), 165148 (2018)
CrossRef ADS Google scholar
[23]
T. Liu , Y. R. Zhang , Q. Ai , Z. Gong , K. Kawabata , M. Ueda , and F. Nori , Second-order topological phases in nonHermitian systems, Phys. Rev. Lett. 122 (7), 076801 (2019)
CrossRef ADS Google scholar
[24]
F. K. Kunst , E. Edvardsson , J. C. Budich , and E. J. Bergholtz , Biorthogonal bulk–boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121 (2), 026808 (2018)
CrossRef ADS Google scholar
[25]
S. Yao and Z. Wang , Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121 (8), 086803 (2018)
CrossRef ADS Google scholar
[26]
S. Yao , F. Song , and Z. Wang , Non-Hermitian Chern bands, Phys. Rev. Lett. 121 (13), 136802 (2018)
CrossRef ADS Google scholar
[27]
K. Esaki , M. Sato , K. Hasebe , and M. Kohmoto , Edge states and topological phases in non-Hermitian systems, Phys. Rev. B 84 (20), 205128 (2011)
CrossRef ADS Google scholar
[28]
B. Zhu , R. Lu , and S. Chen, PT symmetry in the non-Hermitian Su–Schrieffer–Heeger model with complex boundary potentials, Phys. Rev. A 89 (6), 062102 (2014)
CrossRef ADS Google scholar
[29]
H. Jiang , C. Yang , and S. Chen , Topological invariants and phase diagrams for one-dimensional two-band nonHermitian systems without chiral symmetry, Phys. Rev. A 98 (5), 052116 (2018)
CrossRef ADS Google scholar
[30]
C. Yin , H. Jiang , L. Li , R. Lu , and S. Chen , Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral nonHermitian systems, Phys. Rev. A 97 (5), 052115 (2018)
CrossRef ADS Google scholar
[31]
F. Dangel , M. Wagner , H. Cartarius , J. Main , and G. Wunner , Topological invariants in dissipative extensions of the Su–Schrieffer–Heeger model, Phys. Rev. A 98 (1), 013628 (2018)
CrossRef ADS Google scholar
[32]
S. Lieu , Topological phases in the non-Hermitian Su– Schrieffer–Heeger model, Phys. Rev. B 97 (4), 045106 (2018)
CrossRef ADS Google scholar
[33]
R. Chen , C. Z. Chen , B. Zhou , and D. H. Xu , Finite-size effects in non-Hermitian topological systems, Phys. Rev. B 99 (15), 155431 (2019)
CrossRef ADS Google scholar
[34]
D. Leykam , K. Y. Bliokh , C. Huang , Y. D. Chong , and F. Nori , Edge modes, degeneracies, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118 (4), 040401 (2017)
CrossRef ADS Google scholar
[35]
J. Y. Lee , J. Ahn , H. Zhou , and A. Vishwanath , Topological correspondence between Hermitian and non-Hermitian systems: Anomalous dynamics, Phys. Rev. Lett. 123 (20), 206404 (2019)
CrossRef ADS Google scholar
[36]
D. C. Brody , Biorthogonal quantum mechanics, J. Phys. A: Math. Theor. 47, 035305 (2014)
CrossRef ADS Google scholar
[37]
D. C. Brody , Consistency of PT-symmetric quantum mechanics J. Phys. A: Math. Theor. 49, 10LT03 (2016)
CrossRef ADS Google scholar
[38]
L. Zhang , L. Zhang , S. Niu , and X. J. Liu , Dynamical classification of topological quantum phases, Sci. Bull. (Beijing) 63 (21), 1385 (2018)
CrossRef ADS Google scholar
[39]
E. Zeidler , Quantum Field Theory (I): Basics in Mathematics and Physics, Springer, (2006)
[40]
A. Bohm , A. Mostafazadeh , H. Koizumi , Q. Niu , and J. Zwanziger , The Geometric Phase in Quantum Systems, Springer, New York, (2003)
[41]
D. Xiao , M. C. Chang , and Q. Niu , Berry phase effects on electronic properties, Rev. Mod. Phys. 82 (3), 1959 (2010)
CrossRef ADS Google scholar
[42]
G. von Gersdorff , S. Panahiyan , and W. Chen , Unification of topological invariants in Dirac models, Phys. Rev. B 103 (24), 245146 (2021)
CrossRef ADS Google scholar
[43]
W. Chen , M. Legner , A. Ruegg , and M. Sigrist , Correlation length, universality classes, and scaling laws associated with topological phase transitions, Phys. Rev. B 95 (7), 075116 (2017)
CrossRef ADS Google scholar
[44]
F. Bernardini , J. Mittleman , H. Rushmeier , C. Silva , and G. Taubin , The Ball–Pivoting algorithm for surface reconstruction, IEEE Trans. Vis. Comput. Graph. 5 (4), 349 (1999)
CrossRef ADS Google scholar
[45]
W. Chen , M. Sigrist , and A. P. Schnyder , Scaling theory of Z2 topological invariants, J. Phys.: Condens. Matter 28 (36), 365501 (2016)
CrossRef ADS Google scholar
[46]
W. Chen and A. P. Schnyder , Universality classes of topological phase transitions with higher-order band crossing, New J. Phys. 21 (7), 073003 (2019)
CrossRef ADS Google scholar
[47]
X. G. Wen , A theory of 2+1D bosonic topological orders, Natl. Sci. Rev. 3 (1), 68 (2016)
CrossRef ADS Google scholar
[48]
X. G. Wen , Topological orders in rigid states, Int. J. Mod. Phys. B 04 (02), 239 (1990)
CrossRef ADS Google scholar
[49]
S. Kou , Z. Weng , and X. Wen , Mutual Chern–Simons theory and its applications in condensed matter physics, Front. Phys. 2 (1), 31 (2007)
CrossRef ADS Google scholar
[50]
A. Fan , S. D. Liang , submitted to Annalen der Physik
[51]
A. Fan , Ph. D. dissertation, Sun Yat-Sen University, Guangzhou, China, 2021

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1310 KB)

Accesses

Citations

Detail

Sections
Recommended

/