Rydberg quantum computation with nuclear spins in two-electron neutral atoms
Xiao-Feng Shi
Rydberg quantum computation with nuclear spins in two-electron neutral atoms
Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states |0〉 and |1〉 are excited to Rydberg states |r〉 with detuning Δ and 0, respectively, where a MHz-scale detuning Δ arises from a weak magnetic field on the order of 1 G. With a proper ratio between Δ and Ω, the qubit state |1〉 can be fully excited to the Rydberg state while |0〉 remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.
alkaline-earth atom / Rydberg state / quantum computation / neutral atom
[1] |
M. A. Nielsen and I. L. Chuang, Quantum Computa-tion and Quantum Information, Cambridge University Press, Cambridge, 2000
|
[2] |
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature(London) 464, 45 (2010)
CrossRef
ADS
Google scholar
|
[3] |
R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453, 1008 (2008)
CrossRef
ADS
Google scholar
|
[4] |
J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58, 42 (2005)
CrossRef
ADS
Google scholar
|
[5] |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011)
CrossRef
ADS
Google scholar
|
[6] |
D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L.Hu, and J. R. Petta, Quantum Spintronics: Engineering and manipulating atom-like spins in semiconductors, Science 339, 1174 (2013)
CrossRef
ADS
Google scholar
|
[7] |
M. H. Devoret and R. J. Schoelkopf, Superconductingcircuits for quantum information: An outlook, Science 339, 1169 (2013)
CrossRef
ADS
Google scholar
|
[8] |
D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85, 2208 (2000)
CrossRef
ADS
Google scholar
|
[9] |
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87, 037901 (2001)
CrossRef
ADS
Google scholar
|
[10] |
M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010)
CrossRef
ADS
Google scholar
|
[11] |
M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges, J.Phys. B 49, 202001 (2016)
CrossRef
ADS
Google scholar
|
[12] |
D. S. Weiss and M. Saffman, Quantum computing withneutral atoms, Phys. Today 70, 44 (2017)
CrossRef
ADS
Google scholar
|
[13] |
C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Rydberg atom quantum technologies, J. Phys. B: At. Mol.Opt. Phys. 53, 012002 (2020)
CrossRef
ADS
Google scholar
|
[14] |
T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104, 010502 (2010)
CrossRef
ADS
Google scholar
|
[15] |
L. Isenhower, E. Urban, X. L. Zhang, A. T.Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104, 010503 (2010)
CrossRef
ADS
Google scholar
|
[16] |
X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, Deterministic entanglement of two neutral atoms via Rydberg blockade, Phys. Rev. A 82, 030306(R) (2010)
CrossRef
ADS
Google scholar
|
[17] |
K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J.Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, Rydberg-blockade controlled-NOT gate and entanglement in a two-dimensional array of neutral-atom qubits, Phys.Rev. A 92, 022336 (2015)
CrossRef
ADS
Google scholar
|
[18] |
Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Entangling atomic spins with a Rydberg-dressed spin-flip blockade, Nat. Phys. 12, 71(2016)
CrossRef
ADS
Google scholar
|
[19] |
Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular, G. V. Shlyapnikov, and M. Zhan, Entangling two individual atoms of different isotopes via Rydberg blockade, Phys. Rev. Lett. 119, 160502 (2017)
CrossRef
ADS
Google scholar
|
[20] |
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity control and entanglement of Rydberg atom qubits, Phys. Rev. Lett. 121, 123603 (2018)
CrossRef
ADS
Google scholar
|
[21] |
C. J. Picken, R. Legaie, K. McDonnell, and J. D. Pritchard, Entanglement of neutral-atom qubits with long ground-Rydberg coherence times, Quant. Sci. Technol. 4, 015011 (2019)
CrossRef
ADS
Google scholar
|
[22] |
H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Parallel implementation of high-fidelity multi-qubit gates with neutral atoms, Phys. Rev. Lett. 123, 170503 (2019)
CrossRef
ADS
Google scholar
|
[23] |
T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Rydberg mediated entanglement in a twodimensional neutral atom qubit array, Phys. Rev. Lett. 123, 230501 (2019)
CrossRef
ADS
Google scholar
|
[24] |
H. Jo, Y. Song, M. Kim, and J. Ahn, Rydberg atom entanglements in the weak coupling regime, Phys. Rev. Lett. 124, 33603 (2019)
CrossRef
ADS
Google scholar
|
[25] |
I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms, Nat. Phys. 16, 857 (2020)
CrossRef
ADS
Google scholar
|
[26] |
D. Crow, R. Joynt, and M. Saffman, Improved error thresholds for measurement-free error correction, Phys. Rev. Lett. 117, 130503 (2016)
CrossRef
ADS
Google scholar
|
[27] |
R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y. Takahashi, An ytterbium quantum gas microscope with narrow-line laser cooling, New J. Phys. 18, 023016 (2016)
CrossRef
ADS
Google scholar
|
[28] |
S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson, Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array, Phys. Rev. Lett. 122, 143002 (2019)
CrossRef
ADS
Google scholar
|
[29] |
A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, and M. Endres, Alkaline-earth atoms in optical tweezers, Phys. Rev. X 8, 41055 (2018)
CrossRef
ADS
Google scholar
|
[30] |
J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres, 2000-times repeated imaging of strontium atoms in clockmagic tweezer arrays, Phys. Rev. Lett. 122, 173201 (2019)
CrossRef
ADS
Google scholar
|
[31] |
M. A. Norcia, A. W. Young, and A. M. Kaufman, Microscopic control and detection of ultracold strontium in optical-tweezer arrays, Phys. Rev. X 8, 041054 (2018)
CrossRef
ADS
Google scholar
|
[32] |
I. Reichenbach and I. H. Deutsch, Sideband cooling while preserving coherences in the nuclear spin state in group- II-like atoms, Phys. Rev. Lett. 99, 123001 (2007)
CrossRef
ADS
Google scholar
|
[33] |
J. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. Burgers, and J. Thompson, Trapped arrays of alkaline earth Rydberg atoms in optical tweezers, arXiv: 1912.08754 [quant-ph] (2019)
|
[34] |
X.-F. Shi, Rydberg quantum gates free from blockade error, Phys. Rev. Appl. 7, 064017 (2017)
CrossRef
ADS
Google scholar
|
[35] |
K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003 (1998)
CrossRef
ADS
Google scholar
|
[36] |
P. Král, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage, Rev. Mod. Phys. 79, 53 (2007)
CrossRef
ADS
Google scholar
|
[37] |
N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89, 015006 (2017)
CrossRef
ADS
Google scholar
|
[38] |
D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage, Phys. Rev. Lett. 100, 170504 (2008)
CrossRef
ADS
Google scholar
|
[39] |
M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, Mesoscopic Rydberg gate based on electromagnetically induced transparency, Phys. Rev. Lett.102, 170502 (2009)
CrossRef
ADS
Google scholar
|
[40] |
M. H. Goerz, T. Calarco, and C. P. Koch, The quantumspeed limit of optimal controlled phase gates for trappedneutral atoms, J. Phys. B44 (2011)
CrossRef
ADS
Google scholar
|
[41] |
I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. MacCormick, and S. Bergamini, Deterministic single-atom excitation via adiabatic passage and Rydberg blockade, Phy. Rev. A 84, 023413 (2011)
CrossRef
ADS
Google scholar
|
[42] |
M. M. Müller, H. R. Haakh, T. Calarco, C. P. Koch, and C. Henkel, Prospects for fast Rydberg gates on anatom chip, Quant. Inf. Proc. 10, 771 (2011)
CrossRef
ADS
Google scholar
|
[43] |
T. Keating, K. Goyal, Y.-Y. Jau, G. W. Biedermann, A. J. Landahl, and I. H. Deutsch, Adiabatic quantum computation with Rydberg-dressed atoms, Phy. Rev. A 87, 052314 (2013)
CrossRef
ADS
Google scholar
|
[44] |
D. Petrosyan and K. Mølmer, Stimulated adiabaticpassage in a dissipative ensemble ofatoms with strong Rydberg-state interactions, Phys. Rev. A 87, 033416 (2013)
CrossRef
ADS
Google scholar
|
[45] |
I. I. Beterov, M. Saffman, E. a. Yakshina, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, C. W. Mansell, C. MacCormick, S. Bergamini, and M. P. Fedoruk, Quantum gates in mesoscopic atomic ensemblesbased on adiabatic passage and Rydberg blockade, Phys. Rev. A 88, 010303(R) (2013)
CrossRef
ADS
Google scholar
|
[46] |
M. M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms, Phys. Rev. A 89, 032334 (2014)
CrossRef
ADS
Google scholar
|
[47] |
M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch, and K. B. Whaley, Robustness of high-fidelity Rydberg gates with single-site addressability, Phys. Rev. A 90, 032329 (2014)
CrossRef
ADS
Google scholar
|
[48] |
I. I. Beterov, M. Saffman, V. P. Zhukov, D. B.Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. W. Mansell, C. Maccormick, S. Bergamini, and M. P. Fedoruk, Coherent control of mesoscopic atomic ensembles for quantum information, Laser Phys. 24, 074013 (2014)
CrossRef
ADS
Google scholar
|
[49] |
T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, Robust quantum logicin neutral atoms via adiabatic Rydberg dressing, Phys. Rev. A 91, 012337 (2015)
CrossRef
ADS
Google scholar
|
[50] |
I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, G. N. Hamzina, and I. I. Ryabtsev, Simulated quantum process tomography of quantum gates with Rydberg superatoms, J. Phys. B 49, 114007 (2016)
CrossRef
ADS
Google scholar
|
[51] |
L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, High-fidelity Rydberg-blockade entangling gate usingshaped, analytic pulses, Phys. Rev. A 94, 032306 (2016)
CrossRef
ADS
Google scholar
|
[52] |
H. Wu, X. R. Huang, C. S. Hu, Z. B. Yang, and S. B. Zheng, Rydberg-interaction gates via adiabatic passage and phase control of driving fields, Phy. Rev. A 96, 022321 (2017)
CrossRef
ADS
Google scholar
|
[53] |
D. Petrosyan, F. Motzoi, M. Saffman, and K. Mølmer, High-fidelity Rydberg quantum gate via a two-atom dark state, Phys. Rev. A 96, 042306 (2017)
CrossRef
ADS
Google scholar
|
[54] |
Y.-H. Kang, Y.-H. Chen, Z.-C. Shi, B.-H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A 97, 042336 (2018)
CrossRef
ADS
Google scholar
|
[55] |
A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.16Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science 365, 570 (2019)
CrossRef
ADS
Google scholar
|
[56] |
K.-Y. Liao, X.-H. Lu, Z. Li, and Y.-X. Du, Geometric Rydberg quantum gate with shortcuts to adiabaticity, Opt. Lett. 44, 4801 (2019)
CrossRef
ADS
Google scholar
|
[57] |
Y. Sun, P. Xu, P.-X. Chen, and L. Liu, Controlled phase gate protocol for neutral atoms via off-resonant, Phys. Rev. Appl. 13, 024059 (2020)
CrossRef
ADS
Google scholar
|
[58] |
X.-F. Shi, Single-site Rydberg addressing in 3D atomicarrays for quantum computing with neutral atoms, J. Phys. B 53, 054002 (2020)
CrossRef
ADS
Google scholar
|
[59] |
A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Molmer–Sorenson gate for neutralatoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101, 030301(R) (2020)
CrossRef
ADS
Google scholar
|
[60] |
I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, M. Saffman, and S. Bergamini, Application of adiabatic passage in Rydberg atomic ensembles for quantum information processing, J. Phys. B 53, 182001 (2020)
CrossRef
ADS
Google scholar
|
[61] |
M. Saffman, I. I. Beterov, A. Dalal, E. J. Paez, and B. C. Sanders, Symmetric Rydberg controlled-Z gates with adiabatic pulses control target, Phys. Rev. A 101, 62309 (2020)
CrossRef
ADS
Google scholar
|
[62] |
Y.-H. Kang, Z.-C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102, 022617 (2020)
CrossRef
ADS
Google scholar
|
[63] |
C.-Y. Guo, L. L. Yan, S. Zhang, S.-L. Su, and W. Li, Optimized geometric quantum computation with mesoscopic ensemble of Rydberg atoms, Phys. Rev. A 102, 042607 (2020)
CrossRef
ADS
Google scholar
|
[64] |
M. Khazali and K. Molmer, Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10, 21054 (2020)
CrossRef
ADS
Google scholar
|
[65] |
A. M. Hankin, Y.-Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, Two-atom Rydberg blockade using direct 6S to nP excitation. Phys. Rev. A 89, 033416 (2014)
CrossRef
ADS
Google scholar
|
[66] |
R. C. Teixeira, A. Larrouy, A. Muni, L. Lachaud, J. M. Raimond, S. Gleyzes, and M. Brune, Preparation of longlived, non-autoionizing circular Rydberg states of strontium, Phys. Rev. Lett. 125, 263001 (2020)
CrossRef
ADS
Google scholar
|
[67] |
D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Entanglement of atoms via cold controlled collisions, Phys. Rev. Lett. 82, 1975 (1999)
CrossRef
ADS
Google scholar
|
[68] |
T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps, Phys. Rev. A 61, 022304 (2000)
CrossRef
ADS
Google scholar
|
[69] |
D. Hayes, P. S. Julienne, and I. H. Deutsch, Quantum logic via the exchange blockade in ultracold collisions, Phys. Rev. Lett. 98, 070501 (2007)
CrossRef
ADS
Google scholar
|
[70] |
J. P. Covey, A. Sipahigil, S. Szoke, N. Sinclair, M. Endres, and O. Painter, Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics, Phys. Rev. Appl. 11, 034044 (2019)
CrossRef
ADS
Google scholar
|
[71] |
A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Quantum computing with alkaline-earth-metal atoms, Phys. Rev. Lett. 101, 170504 (2008)
CrossRef
ADS
Google scholar
|
[72] |
G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spinexchange dynamics, Phys. Rev. Lett. 113, 120402 (2014)
CrossRef
ADS
Google scholar
|
[73] |
F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spinexchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys. 10, 779 (2014)
CrossRef
ADS
Google scholar
|
[74] |
A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L.Wall, A. M. Rey, and C. A. Regal, Entangling two transportable neutral atoms via local spin exchange, Nature 527, 208 (2015)
CrossRef
ADS
Google scholar
|
[75] |
A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M.Boyd, J. Ye, P. Zoller, and M. D. Lukin, Alkaline earth-metal atoms as few-qubit quantum registers, Phys. Rev. Lett. 102, 110503 (2009)
CrossRef
ADS
Google scholar
|
[76] |
A. J. Daley, J. Ye, and P. Zoller, State-dependent lattices for quantum computing with alkaline-earth-metal atoms, Eur. Phys. J. D 65, 207 (2011)
CrossRef
ADS
Google scholar
|
[77] |
A. J. Daley, Quantum computing and quantum simulation with group-II atoms, Quant. Inf. Proc. 10, 865 (2011)
CrossRef
ADS
Google scholar
|
[78] |
G. Pagano, F. Scazza, and M. FossFeig, Fast and scalable quantum information processing with two electron atoms in optical tweezer arrays, Adv. Quant. Technol. 2, 1970021 (2019)
CrossRef
ADS
Google scholar
|
[79] |
J. H. M. Jensen, J. J. Sørensen, K. Mølmer, and J. F. Sherson, Time-optimal control of collisional SWAP gates in ultracold atomic systems, Phys. Rev. A 100, 052314 (2019)
CrossRef
ADS
Google scholar
|
[80] |
R. Stock, N. S. Babcock, M. G. Raizen, and B. C. Sanders, Entanglement of group-II-like atoms with fast measurement for quantum information processing, Phys. Rev. 78, 022301 (2008)
CrossRef
ADS
Google scholar
|
[81] |
M. Saffman and T. G. Walker, Analysis of a quantum logic device based on dipole-dipole interactions of opticallytrapped Rydberg atoms, Phys. Rev. A 72, 022347(2005)
CrossRef
ADS
Google scholar
|
[82] |
M. Saffman, X. L. Zhang, A. T. Gill, L. Isenhower, and T. G. Walker, Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms, J. Phys.: Conf. Ser. 264, 012023 (2011)
CrossRef
ADS
Google scholar
|
[83] |
S. G. Porsev, A. Derevianko, and E. N. Fortson, Possibility of an optical clock using the 61S0 → 63Po0 transition in 171,173Yb atoms held in an optical lattice, Phys. Rev. A 69, 021403(R) (2004)
CrossRef
ADS
Google scholar
|
[84] |
B. Budick and J. Snir, Hyperfine structure of the 6s6p1P1 level of the stable ytterbium isotopes, Phys. Rev. 178, 18 (1969)
CrossRef
ADS
Google scholar
|
[85] |
R. W. Berends and L. Maleki, Hyperfine structure andisotope shifts of transitions in neutral and singly ionized ytterbium, J. Opt. Soc. Am. B 9, 332 (1992)
CrossRef
ADS
Google scholar
|
[86] |
K. Deilamian, J. D. Gillaspy, and D. E. Kelleher, Isotopeshifts and hyperfine splittings of the 3988-nm Yb I line, J. Opt. Soc. Am. B 10, 789 (1993)
CrossRef
ADS
Google scholar
|
[87] |
R. Zinkstok, E. J. Van Duijn, S. Witte, and W. Hogervorst, Hyperfine structure and isotope shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation, J. Phys. B 35, 2693 (2002)
CrossRef
ADS
Google scholar
|
[88] |
P. E. Atkinson, J. S. Schelfhout, and J. J. McFerran, Hyperfine constants and line separationsfor the 1S0 → 3P1 intercombination linein neutral ytterbium with sub- Doppler resolution, Phys. Rev. A 100, 042505 (2019)
CrossRef
ADS
Google scholar
|
[89] |
A.-M. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, Isotope shifts and hyperfine structure in the 369.4-nm 6s–6p1/2 resonance line of singly ionized ytterbium, Phys. Rev. A 49, 3351 (1994)
CrossRef
ADS
Google scholar
|
[90] |
K. B. Blagoev and V. A. Komarovskii, Lifetimes of levels of neutral and singly ionized lanthanide atoms, At. Data Nucl. Data Tables 56, 1 (1994)
CrossRef
ADS
Google scholar
|
[91] |
M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-Willette, S. M. Foreman, and J. Ye, Nuclear spin effects in optical lattice clocks, Phys. Rev. A76(2007)
CrossRef
ADS
Google scholar
|
[92] |
B. Budick and J. Snir, Hyperfine-structure anomalies of stable ytterbium isotopes, Phys. Rev. A 1, 545 (1970)
CrossRef
ADS
Google scholar
|
[93] |
K. Pandey, A. K. Singh, P. V. Kumar, M. V. Suryanarayana, and V. Natarajan, Isotope shifts and hyperfine structure in the 555.8-nm 1S0 → 3P1 line of Yb, Phys. Rev. A 80, 022518 (2009)
CrossRef
ADS
Google scholar
|
[94] |
H. Lehec, X. Hua, P. Pillet, and P. Cheinet, Isolated core excitation of high-orbital quantum-number Rydberg states of ytterbium, Phys. Rev. A 103, 022806 (2021)
CrossRef
ADS
Google scholar
|
[95] |
G. Higgins, W. Li, F. Pokorny, C. Zhang, F. Kress, C. Maier, J. Haag, Q. Bodart, I. Lesanovsky, and M. Hennrich, A single strontium Rydberg ion confinedin a Paul trap, Phys. Rev. X 7, 021038 (2017)
CrossRef
ADS
Google scholar
|
[96] |
G. Higgins, F. Pokorny, C. Zhang, Q. Bodart, and M. Hennrich, Coherent control of a single trapped Rydbergion, Phys. Rev. Lett. 119, 220501 (2017)
CrossRef
ADS
Google scholar
|
[97] |
C. Zhang, F. Pokorny, W. Li, G. Higgins, A. Pöschl, I. Lesanovsky, and M. Hennrich, Submicrosecond entangling gate between trapped ions via Rydberg interaction, Nature 580, 345 (2020)
CrossRef
ADS
Google scholar
|
[98] |
X.-F. Shi, Fast, Accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms, Phys. Rev. Appl. 11, 044035 (2019)
CrossRef
ADS
Google scholar
|
[99] |
X. L. Zhang, A. T. Gill, L. Isenhower, T. G. Walker, and M. Saffman, Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography, Phys. Rev. A 85, 042310 (2012)
CrossRef
ADS
Google scholar
|
[100] |
X.-F. Shi, Accurate quantum logic gates by spin echo in Rydberg atoms, Phys. Rev. Appl. 10, 034006 (2018)
CrossRef
ADS
Google scholar
|
[101] |
L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367, 47 (2007)
CrossRef
ADS
Google scholar
|
[102] |
E. J. Robertson, N. ŠˇSibalić, R. M. Potvliege, and M. P. A. Jones, ARC 3.0: An expanded Python toolbox for atomic physics, Comp. Phys. Comm. 261, 107814 (2021)
CrossRef
ADS
Google scholar
|
[103] |
H. Lehec, A. Zuliani, W. Maineult, E. Luc-Koenig, P. Pillet, P. Cheinet, F. Niyaz, and T. F. Gallagher, Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and multichannel quantum defect theory analysis, Phys. Rev. A 98, 062506 (2018)
CrossRef
ADS
Google scholar
|
[104] |
B. Kaulakys, Consistent analytical approach for the quasi-classical radial dipole matrix elements, J. Phys. B 28, 4963 (1995)
CrossRef
ADS
Google scholar
|
[105] |
X.-F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement of neutral-atom chains by spin-exchange Rydberg interaction, Phys. Rev. A 90, 062327 (2014)
CrossRef
ADS
Google scholar
|
[106] |
X.-F. Shi, Transition slow-down by Rydberg interactionof neutral atoms and a fast controlled-NOT quantum gate, Phys. Rev. Appl. 14, 054058 (2020)
CrossRef
ADS
Google scholar
|
[107] |
J. S. Ross and K. Murakawa, Nuclear quadrupole moment of Yb173, Phys. Rev. 128, 1159 (1962)
CrossRef
ADS
Google scholar
|
[108] |
M. Aymar, Multichannel-quantum-defect theory wavefunctions of Ba tested or improved by laser measurements, J. Opt. Soc. Am. B 1, 239 (1984)
CrossRef
ADS
Google scholar
|
[109] |
L. Xingye, L. Wanfa, J. Zhankui, and J. Larsson, Test of the multichannel quantum-defect wave function by a Landé-factor (gJ ) investigation in the perturbed 6snp1,3P1 sequencesof Yb I, Phys. Rev. A 49, 4443 (1994)
CrossRef
ADS
Google scholar
|
[110] |
T. Ido and H. Katori, Recoil-free spectroscopy of neutral Sr atoms in the Lamb–Dicke regime, Phys. Rev. Lett. 91, 053001 (2003)
CrossRef
ADS
Google scholar
|
[111] |
S. Ye, X. Zhang, T. C. Killian, F. B. Dunning, M. Hiller, S. Yoshida, S. Nagele, and J. Burgdörfer, Production of very-high-n strontium Rydberg atoms, Phys. Rev. A 88, 043430 (2013)
CrossRef
ADS
Google scholar
|
[112] |
C. Gaul, B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, and T. Pohl, Resonant Rydberg dressing of alkaline-earth atoms via electromagnetically induced transparency, Phys. Rev. Lett. 116, 243001 (2016)
CrossRef
ADS
Google scholar
|
[113] |
M. N. Winchester, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, Magnetically Induced optical transparency on a forbidden transition in strontium for cavityenhanced spectroscopy, Phys. Rev. Lett. 118, 263601 (2017)
CrossRef
ADS
Google scholar
|
[114] |
R. Ding, J. D. Whalen, S. K. Kanungo, T. C. Killian, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Spectroscopy of Sr87 triplet Rydberg states, Phys. Rev. A 98, 042505 (2018)
CrossRef
ADS
Google scholar
|
[115] |
H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, Oscillator strengths and radiative branching ratios in atomic Sr, Phys. Rev. A 46, 1248 (1992)
CrossRef
ADS
Google scholar
|
[116] |
C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Longrange Rydberg–Rydberg interactions in calcium, strontium and ytterbium, J. Phys. B: At. Mol. Opt. Phys. 45, 135004 (2012)
CrossRef
ADS
Google scholar
|
[117] |
C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Multichannel quantum defect theory of strontium bound Rydberg states, J. Phys. B: At. Mol. Opt. Phys. 47, 155001 (2014)
CrossRef
ADS
Google scholar
|
[118] |
F. B. Dunning, T. C. Killian, S. Yoshida, and J. Burgdörfer, Recent advances in Rydberg physics using alkalineearth atoms, J. Phys. B 49, 112003 (2016)
CrossRef
ADS
Google scholar
|
[119] |
F. Robicheaux, Calculations of long range interactions for 87Sr Rydberg states, J. Phys. B 52, 244001 (2019)
CrossRef
ADS
Google scholar
|
[120] |
R. Mukherjee, J. Millen, R. Nath, M. P. Jones, and T. Pohl, Many-body physics with alkaline-earth Rydberg lattices, J. Phys. B 44, 184010 (2011)
CrossRef
ADS
Google scholar
|
[121] |
X. Zhang, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Rydberg blockade effects at n∼ 300 instrontium, Phys. Rev. A 92, 051402(R) (2015)
CrossRef
ADS
Google scholar
|
[122] |
B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K. R. A. Hazzard, F. B. Dunning, and T. C. Killian, Rydberg–blockade effectsin Autler–Townes spectra of ultracold strontium, Phys. Rev. A 93, 022709 (2016)
CrossRef
ADS
Google scholar
|
[123] |
S. Yoshida, J. Burgdörfer, X. Zhang, and F. B. Dunning, Rydberg blockade in a hot atomic beam, Phy. Rev. A 95, 042705 (2017)
CrossRef
ADS
Google scholar
|
[124] |
J. E. Sansonetti and G. Nave, Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (Sr I), J. Phys. Chem. Ref. Data 39, 033103 (2010)
CrossRef
ADS
Google scholar
|
[125] |
R. J. Fonck, F. L. Roesler, D. H. Tracy, K. T. Lu, F. S. Tomkins, and W. R. S. Garton, Atomic diamagnetism and diamagnetically induced configuration mixing in laser-excited barium, Phys. Rev. Lett. 39, 1513 (1977)
CrossRef
ADS
Google scholar
|
[126] |
C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98, 023002 (2007)
CrossRef
ADS
Google scholar
|
[127] |
T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104, 013001 (2010)
CrossRef
ADS
Google scholar
|
[128] |
S.-L. Su, F.-Q. Guo, J.-L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications, EPL 131, 53001 (2020)
CrossRef
ADS
Google scholar
|
[129] |
A. Lurio, M. Mandel, and R. Novick, Second-order hyperfineand Zeeman corrections for an (sl) configuration, Phys. Rev. 126, 1758 (1962)
CrossRef
ADS
Google scholar
|
[130] |
D. W. Fang, W. J. Xie, Y. Zhang, X. Hu, and Y. Y. Liu, Radiative lifetimes of Rydberg state of ytterbium, J. Quant. Spectrosc. Ra. 69, 469 (2001)
CrossRef
ADS
Google scholar
|
[131] |
J. P. Covey, A. Sipahigil, and M. Saffman, Microwavetooptical conversion via four-wave mixing in a cold ytterbium ensemble, Phys. Rev. A 100, 012307 (2019)
CrossRef
ADS
Google scholar
|
[132] |
D. A. Steck, Quantum and Atom Optics, http //steck.us/ teaching
|
[133] |
T. G. Walker and M. Saffman, Consequences of Zeemandegeneracy for the van der Waals blockade between Rydberg atoms, Phys. Rev. A 77, 032723 (2008)
CrossRef
ADS
Google scholar
|
[134] |
T. Zelevinsky, M. M. Boyd, A. D. Ludlow, T. Ido, J. Ye, R. Ciury lo, P. Naidon, and P. S. Julienne, Narrow line photo association in an optical lattice, Phys. Rev. Lett. 96, 203201 (2006)
CrossRef
ADS
Google scholar
|
[135] |
J. Millen, G. Lochead, and M. P. A. Jones, Two electron excitation of an interacting cold Rydberg gas, Phys. Rev. Lett. 105, 213004 (2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |