Rydberg quantum computation with nuclear spins in two-electron neutral atoms

Xiao-Feng Shi

PDF(861 KB)
PDF(861 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (5) : 52501. DOI: 10.1007/s11467-021-1069-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Rydberg quantum computation with nuclear spins in two-electron neutral atoms

Author information +
History +

Abstract

Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states |0〉 and |1〉 are excited to Rydberg states |r〉 with detuning Δ and 0, respectively, where a MHz-scale detuning Δ arises from a weak magnetic field on the order of 1 G. With a proper ratio between Δ and Ω, the qubit state |1〉 can be fully excited to the Rydberg state while |0〉 remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.

Keywords

alkaline-earth atom / Rydberg state / quantum computation / neutral atom

Cite this article

Download citation ▾
Xiao-Feng Shi. Rydberg quantum computation with nuclear spins in two-electron neutral atoms. Front. Phys., 2021, 16(5): 52501 https://doi.org/10.1007/s11467-021-1069-6

References

[1]
M. A. Nielsen and I. L. Chuang, Quantum Computa-tion and Quantum Information, Cambridge University Press, Cambridge, 2000
[2]
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature(London) 464, 45 (2010)
CrossRef ADS Google scholar
[3]
R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453, 1008 (2008)
CrossRef ADS Google scholar
[4]
J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58, 42 (2005)
CrossRef ADS Google scholar
[5]
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011)
CrossRef ADS Google scholar
[6]
D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L.Hu, and J. R. Petta, Quantum Spintronics: Engineering and manipulating atom-like spins in semiconductors, Science 339, 1174 (2013)
CrossRef ADS Google scholar
[7]
M. H. Devoret and R. J. Schoelkopf, Superconductingcircuits for quantum information: An outlook, Science 339, 1169 (2013)
CrossRef ADS Google scholar
[8]
D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85, 2208 (2000)
CrossRef ADS Google scholar
[9]
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87, 037901 (2001)
CrossRef ADS Google scholar
[10]
M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010)
CrossRef ADS Google scholar
[11]
M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges, J.Phys. B 49, 202001 (2016)
CrossRef ADS Google scholar
[12]
D. S. Weiss and M. Saffman, Quantum computing withneutral atoms, Phys. Today 70, 44 (2017)
CrossRef ADS Google scholar
[13]
C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Rydberg atom quantum technologies, J. Phys. B: At. Mol.Opt. Phys. 53, 012002 (2020)
CrossRef ADS Google scholar
[14]
T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104, 010502 (2010)
CrossRef ADS Google scholar
[15]
L. Isenhower, E. Urban, X. L. Zhang, A. T.Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104, 010503 (2010)
CrossRef ADS Google scholar
[16]
X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, Deterministic entanglement of two neutral atoms via Rydberg blockade, Phys. Rev. A 82, 030306(R) (2010)
CrossRef ADS Google scholar
[17]
K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J.Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, Rydberg-blockade controlled-NOT gate and entanglement in a two-dimensional array of neutral-atom qubits, Phys.Rev. A 92, 022336 (2015)
CrossRef ADS Google scholar
[18]
Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Entangling atomic spins with a Rydberg-dressed spin-flip blockade, Nat. Phys. 12, 71(2016)
CrossRef ADS Google scholar
[19]
Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular, G. V. Shlyapnikov, and M. Zhan, Entangling two individual atoms of different isotopes via Rydberg blockade, Phys. Rev. Lett. 119, 160502 (2017)
CrossRef ADS Google scholar
[20]
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity control and entanglement of Rydberg atom qubits, Phys. Rev. Lett. 121, 123603 (2018)
CrossRef ADS Google scholar
[21]
C. J. Picken, R. Legaie, K. McDonnell, and J. D. Pritchard, Entanglement of neutral-atom qubits with long ground-Rydberg coherence times, Quant. Sci. Technol. 4, 015011 (2019)
CrossRef ADS Google scholar
[22]
H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Parallel implementation of high-fidelity multi-qubit gates with neutral atoms, Phys. Rev. Lett. 123, 170503 (2019)
CrossRef ADS Google scholar
[23]
T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Rydberg mediated entanglement in a twodimensional neutral atom qubit array, Phys. Rev. Lett. 123, 230501 (2019)
CrossRef ADS Google scholar
[24]
H. Jo, Y. Song, M. Kim, and J. Ahn, Rydberg atom entanglements in the weak coupling regime, Phys. Rev. Lett. 124, 33603 (2019)
CrossRef ADS Google scholar
[25]
I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms, Nat. Phys. 16, 857 (2020)
CrossRef ADS Google scholar
[26]
D. Crow, R. Joynt, and M. Saffman, Improved error thresholds for measurement-free error correction, Phys. Rev. Lett. 117, 130503 (2016)
CrossRef ADS Google scholar
[27]
R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y. Takahashi, An ytterbium quantum gas microscope with narrow-line laser cooling, New J. Phys. 18, 023016 (2016)
CrossRef ADS Google scholar
[28]
S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson, Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array, Phys. Rev. Lett. 122, 143002 (2019)
CrossRef ADS Google scholar
[29]
A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, and M. Endres, Alkaline-earth atoms in optical tweezers, Phys. Rev. X 8, 41055 (2018)
CrossRef ADS Google scholar
[30]
J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres, 2000-times repeated imaging of strontium atoms in clockmagic tweezer arrays, Phys. Rev. Lett. 122, 173201 (2019)
CrossRef ADS Google scholar
[31]
M. A. Norcia, A. W. Young, and A. M. Kaufman, Microscopic control and detection of ultracold strontium in optical-tweezer arrays, Phys. Rev. X 8, 041054 (2018)
CrossRef ADS Google scholar
[32]
I. Reichenbach and I. H. Deutsch, Sideband cooling while preserving coherences in the nuclear spin state in group- II-like atoms, Phys. Rev. Lett. 99, 123001 (2007)
CrossRef ADS Google scholar
[33]
J. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. Burgers, and J. Thompson, Trapped arrays of alkaline earth Rydberg atoms in optical tweezers, arXiv: 1912.08754 [quant-ph] (2019)
[34]
X.-F. Shi, Rydberg quantum gates free from blockade error, Phys. Rev. Appl. 7, 064017 (2017)
CrossRef ADS Google scholar
[35]
K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70, 1003 (1998)
CrossRef ADS Google scholar
[36]
P. Král, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage, Rev. Mod. Phys. 79, 53 (2007)
CrossRef ADS Google scholar
[37]
N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89, 015006 (2017)
CrossRef ADS Google scholar
[38]
D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage, Phys. Rev. Lett. 100, 170504 (2008)
CrossRef ADS Google scholar
[39]
M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, Mesoscopic Rydberg gate based on electromagnetically induced transparency, Phys. Rev. Lett.102, 170502 (2009)
CrossRef ADS Google scholar
[40]
M. H. Goerz, T. Calarco, and C. P. Koch, The quantumspeed limit of optimal controlled phase gates for trappedneutral atoms, J. Phys. B44 (2011)
CrossRef ADS Google scholar
[41]
I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. MacCormick, and S. Bergamini, Deterministic single-atom excitation via adiabatic passage and Rydberg blockade, Phy. Rev. A 84, 023413 (2011)
CrossRef ADS Google scholar
[42]
M. M. Müller, H. R. Haakh, T. Calarco, C. P. Koch, and C. Henkel, Prospects for fast Rydberg gates on anatom chip, Quant. Inf. Proc. 10, 771 (2011)
CrossRef ADS Google scholar
[43]
T. Keating, K. Goyal, Y.-Y. Jau, G. W. Biedermann, A. J. Landahl, and I. H. Deutsch, Adiabatic quantum computation with Rydberg-dressed atoms, Phy. Rev. A 87, 052314 (2013)
CrossRef ADS Google scholar
[44]
D. Petrosyan and K. Mølmer, Stimulated adiabaticpassage in a dissipative ensemble ofatoms with strong Rydberg-state interactions, Phys. Rev. A 87, 033416 (2013)
CrossRef ADS Google scholar
[45]
I. I. Beterov, M. Saffman, E. a. Yakshina, V. P. Zhukov, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, C. W. Mansell, C. MacCormick, S. Bergamini, and M. P. Fedoruk, Quantum gates in mesoscopic atomic ensemblesbased on adiabatic passage and Rydberg blockade, Phys. Rev. A 88, 010303(R) (2013)
CrossRef ADS Google scholar
[46]
M. M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms, Phys. Rev. A 89, 032334 (2014)
CrossRef ADS Google scholar
[47]
M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch, and K. B. Whaley, Robustness of high-fidelity Rydberg gates with single-site addressability, Phys. Rev. A 90, 032329 (2014)
CrossRef ADS Google scholar
[48]
I. I. Beterov, M. Saffman, V. P. Zhukov, D. B.Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, C. W. Mansell, C. Maccormick, S. Bergamini, and M. P. Fedoruk, Coherent control of mesoscopic atomic ensembles for quantum information, Laser Phys. 24, 074013 (2014)
CrossRef ADS Google scholar
[49]
T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W. Biedermann, and I. H. Deutsch, Robust quantum logicin neutral atoms via adiabatic Rydberg dressing, Phys. Rev. A 91, 012337 (2015)
CrossRef ADS Google scholar
[50]
I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, G. N. Hamzina, and I. I. Ryabtsev, Simulated quantum process tomography of quantum gates with Rydberg superatoms, J. Phys. B 49, 114007 (2016)
CrossRef ADS Google scholar
[51]
L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, High-fidelity Rydberg-blockade entangling gate usingshaped, analytic pulses, Phys. Rev. A 94, 032306 (2016)
CrossRef ADS Google scholar
[52]
H. Wu, X. R. Huang, C. S. Hu, Z. B. Yang, and S. B. Zheng, Rydberg-interaction gates via adiabatic passage and phase control of driving fields, Phy. Rev. A 96, 022321 (2017)
CrossRef ADS Google scholar
[53]
D. Petrosyan, F. Motzoi, M. Saffman, and K. Mølmer, High-fidelity Rydberg quantum gate via a two-atom dark state, Phys. Rev. A 96, 042306 (2017)
CrossRef ADS Google scholar
[54]
Y.-H. Kang, Y.-H. Chen, Z.-C. Shi, B.-H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A 97, 042336 (2018)
CrossRef ADS Google scholar
[55]
A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.16Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science 365, 570 (2019)
CrossRef ADS Google scholar
[56]
K.-Y. Liao, X.-H. Lu, Z. Li, and Y.-X. Du, Geometric Rydberg quantum gate with shortcuts to adiabaticity, Opt. Lett. 44, 4801 (2019)
CrossRef ADS Google scholar
[57]
Y. Sun, P. Xu, P.-X. Chen, and L. Liu, Controlled phase gate protocol for neutral atoms via off-resonant, Phys. Rev. Appl. 13, 024059 (2020)
CrossRef ADS Google scholar
[58]
X.-F. Shi, Single-site Rydberg addressing in 3D atomicarrays for quantum computing with neutral atoms, J. Phys. B 53, 054002 (2020)
CrossRef ADS Google scholar
[59]
A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Molmer–Sorenson gate for neutralatoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101, 030301(R) (2020)
CrossRef ADS Google scholar
[60]
I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Ryabtsev, M. Saffman, and S. Bergamini, Application of adiabatic passage in Rydberg atomic ensembles for quantum information processing, J. Phys. B 53, 182001 (2020)
CrossRef ADS Google scholar
[61]
M. Saffman, I. I. Beterov, A. Dalal, E. J. Paez, and B. C. Sanders, Symmetric Rydberg controlled-Z gates with adiabatic pulses control target, Phys. Rev. A 101, 62309 (2020)
CrossRef ADS Google scholar
[62]
Y.-H. Kang, Z.-C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102, 022617 (2020)
CrossRef ADS Google scholar
[63]
C.-Y. Guo, L. L. Yan, S. Zhang, S.-L. Su, and W. Li, Optimized geometric quantum computation with mesoscopic ensemble of Rydberg atoms, Phys. Rev. A 102, 042607 (2020)
CrossRef ADS Google scholar
[64]
M. Khazali and K. Molmer, Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10, 21054 (2020)
CrossRef ADS Google scholar
[65]
A. M. Hankin, Y.-Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, Two-atom Rydberg blockade using direct 6S to nP excitation. Phys. Rev. A 89, 033416 (2014)
CrossRef ADS Google scholar
[66]
R. C. Teixeira, A. Larrouy, A. Muni, L. Lachaud, J. M. Raimond, S. Gleyzes, and M. Brune, Preparation of longlived, non-autoionizing circular Rydberg states of strontium, Phys. Rev. Lett. 125, 263001 (2020)
CrossRef ADS Google scholar
[67]
D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Entanglement of atoms via cold controlled collisions, Phys. Rev. Lett. 82, 1975 (1999)
CrossRef ADS Google scholar
[68]
T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, Quantum gates with neutral atoms: Controlling collisional interactions in time dependent traps, Phys. Rev. A 61, 022304 (2000)
CrossRef ADS Google scholar
[69]
D. Hayes, P. S. Julienne, and I. H. Deutsch, Quantum logic via the exchange blockade in ultracold collisions, Phys. Rev. Lett. 98, 070501 (2007)
CrossRef ADS Google scholar
[70]
J. P. Covey, A. Sipahigil, S. Szoke, N. Sinclair, M. Endres, and O. Painter, Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics, Phys. Rev. Appl. 11, 034044 (2019)
CrossRef ADS Google scholar
[71]
A. J. Daley, M. M. Boyd, J. Ye, and P. Zoller, Quantum computing with alkaline-earth-metal atoms, Phys. Rev. Lett. 101, 170504 (2008)
CrossRef ADS Google scholar
[72]
G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spinexchange dynamics, Phys. Rev. Lett. 113, 120402 (2014)
CrossRef ADS Google scholar
[73]
F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spinexchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys. 10, 779 (2014)
CrossRef ADS Google scholar
[74]
A. M. Kaufman, B. J. Lester, M. Foss-Feig, M. L.Wall, A. M. Rey, and C. A. Regal, Entangling two transportable neutral atoms via local spin exchange, Nature 527, 208 (2015)
CrossRef ADS Google scholar
[75]
A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M.Boyd, J. Ye, P. Zoller, and M. D. Lukin, Alkaline earth-metal atoms as few-qubit quantum registers, Phys. Rev. Lett. 102, 110503 (2009)
CrossRef ADS Google scholar
[76]
A. J. Daley, J. Ye, and P. Zoller, State-dependent lattices for quantum computing with alkaline-earth-metal atoms, Eur. Phys. J. D 65, 207 (2011)
CrossRef ADS Google scholar
[77]
A. J. Daley, Quantum computing and quantum simulation with group-II atoms, Quant. Inf. Proc. 10, 865 (2011)
CrossRef ADS Google scholar
[78]
G. Pagano, F. Scazza, and M. FossFeig, Fast and scalable quantum information processing with two electron atoms in optical tweezer arrays, Adv. Quant. Technol. 2, 1970021 (2019)
CrossRef ADS Google scholar
[79]
J. H. M. Jensen, J. J. Sørensen, K. Mølmer, and J. F. Sherson, Time-optimal control of collisional SWAP gates in ultracold atomic systems, Phys. Rev. A 100, 052314 (2019)
CrossRef ADS Google scholar
[80]
R. Stock, N. S. Babcock, M. G. Raizen, and B. C. Sanders, Entanglement of group-II-like atoms with fast measurement for quantum information processing, Phys. Rev. 78, 022301 (2008)
CrossRef ADS Google scholar
[81]
M. Saffman and T. G. Walker, Analysis of a quantum logic device based on dipole-dipole interactions of opticallytrapped Rydberg atoms, Phys. Rev. A 72, 022347(2005)
CrossRef ADS Google scholar
[82]
M. Saffman, X. L. Zhang, A. T. Gill, L. Isenhower, and T. G. Walker, Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms, J. Phys.: Conf. Ser. 264, 012023 (2011)
CrossRef ADS Google scholar
[83]
S. G. Porsev, A. Derevianko, and E. N. Fortson, Possibility of an optical clock using the 61S0 → 63Po0 transition in 171,173Yb atoms held in an optical lattice, Phys. Rev. A 69, 021403(R) (2004)
CrossRef ADS Google scholar
[84]
B. Budick and J. Snir, Hyperfine structure of the 6s6p1P1 level of the stable ytterbium isotopes, Phys. Rev. 178, 18 (1969)
CrossRef ADS Google scholar
[85]
R. W. Berends and L. Maleki, Hyperfine structure andisotope shifts of transitions in neutral and singly ionized ytterbium, J. Opt. Soc. Am. B 9, 332 (1992)
CrossRef ADS Google scholar
[86]
K. Deilamian, J. D. Gillaspy, and D. E. Kelleher, Isotopeshifts and hyperfine splittings of the 3988-nm Yb I line, J. Opt. Soc. Am. B 10, 789 (1993)
CrossRef ADS Google scholar
[87]
R. Zinkstok, E. J. Van Duijn, S. Witte, and W. Hogervorst, Hyperfine structure and isotope shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution of fluorescence radiation, J. Phys. B 35, 2693 (2002)
CrossRef ADS Google scholar
[88]
P. E. Atkinson, J. S. Schelfhout, and J. J. McFerran, Hyperfine constants and line separationsfor the 1S03P1 intercombination linein neutral ytterbium with sub- Doppler resolution, Phys. Rev. A 100, 042505 (2019)
CrossRef ADS Google scholar
[89]
A.-M. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, Isotope shifts and hyperfine structure in the 369.4-nm 6s–6p1/2 resonance line of singly ionized ytterbium, Phys. Rev. A 49, 3351 (1994)
CrossRef ADS Google scholar
[90]
K. B. Blagoev and V. A. Komarovskii, Lifetimes of levels of neutral and singly ionized lanthanide atoms, At. Data Nucl. Data Tables 56, 1 (1994)
CrossRef ADS Google scholar
[91]
M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-Willette, S. M. Foreman, and J. Ye, Nuclear spin effects in optical lattice clocks, Phys. Rev. A76(2007)
CrossRef ADS Google scholar
[92]
B. Budick and J. Snir, Hyperfine-structure anomalies of stable ytterbium isotopes, Phys. Rev. A 1, 545 (1970)
CrossRef ADS Google scholar
[93]
K. Pandey, A. K. Singh, P. V. Kumar, M. V. Suryanarayana, and V. Natarajan, Isotope shifts and hyperfine structure in the 555.8-nm 1S03P1 line of Yb, Phys. Rev. A 80, 022518 (2009)
CrossRef ADS Google scholar
[94]
H. Lehec, X. Hua, P. Pillet, and P. Cheinet, Isolated core excitation of high-orbital quantum-number Rydberg states of ytterbium, Phys. Rev. A 103, 022806 (2021)
CrossRef ADS Google scholar
[95]
G. Higgins, W. Li, F. Pokorny, C. Zhang, F. Kress, C. Maier, J. Haag, Q. Bodart, I. Lesanovsky, and M. Hennrich, A single strontium Rydberg ion confinedin a Paul trap, Phys. Rev. X 7, 021038 (2017)
CrossRef ADS Google scholar
[96]
G. Higgins, F. Pokorny, C. Zhang, Q. Bodart, and M. Hennrich, Coherent control of a single trapped Rydbergion, Phys. Rev. Lett. 119, 220501 (2017)
CrossRef ADS Google scholar
[97]
C. Zhang, F. Pokorny, W. Li, G. Higgins, A. Pöschl, I. Lesanovsky, and M. Hennrich, Submicrosecond entangling gate between trapped ions via Rydberg interaction, Nature 580, 345 (2020)
CrossRef ADS Google scholar
[98]
X.-F. Shi, Fast, Accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms, Phys. Rev. Appl. 11, 044035 (2019)
CrossRef ADS Google scholar
[99]
X. L. Zhang, A. T. Gill, L. Isenhower, T. G. Walker, and M. Saffman, Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography, Phys. Rev. A 85, 042310 (2012)
CrossRef ADS Google scholar
[100]
X.-F. Shi, Accurate quantum logic gates by spin echo in Rydberg atoms, Phys. Rev. Appl. 10, 034006 (2018)
CrossRef ADS Google scholar
[101]
L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367, 47 (2007)
CrossRef ADS Google scholar
[102]
E. J. Robertson, N. ŠˇSibalić, R. M. Potvliege, and M. P. A. Jones, ARC 3.0: An expanded Python toolbox for atomic physics, Comp. Phys. Comm. 261, 107814 (2021)
CrossRef ADS Google scholar
[103]
H. Lehec, A. Zuliani, W. Maineult, E. Luc-Koenig, P. Pillet, P. Cheinet, F. Niyaz, and T. F. Gallagher, Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and multichannel quantum defect theory analysis, Phys. Rev. A 98, 062506 (2018)
CrossRef ADS Google scholar
[104]
B. Kaulakys, Consistent analytical approach for the quasi-classical radial dipole matrix elements, J. Phys. B 28, 4963 (1995)
CrossRef ADS Google scholar
[105]
X.-F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement of neutral-atom chains by spin-exchange Rydberg interaction, Phys. Rev. A 90, 062327 (2014)
CrossRef ADS Google scholar
[106]
X.-F. Shi, Transition slow-down by Rydberg interactionof neutral atoms and a fast controlled-NOT quantum gate, Phys. Rev. Appl. 14, 054058 (2020)
CrossRef ADS Google scholar
[107]
J. S. Ross and K. Murakawa, Nuclear quadrupole moment of Yb173, Phys. Rev. 128, 1159 (1962)
CrossRef ADS Google scholar
[108]
M. Aymar, Multichannel-quantum-defect theory wavefunctions of Ba tested or improved by laser measurements, J. Opt. Soc. Am. B 1, 239 (1984)
CrossRef ADS Google scholar
[109]
L. Xingye, L. Wanfa, J. Zhankui, and J. Larsson, Test of the multichannel quantum-defect wave function by a Landé-factor (gJ ) investigation in the perturbed 6snp1,3P1 sequencesof Yb I, Phys. Rev. A 49, 4443 (1994)
CrossRef ADS Google scholar
[110]
T. Ido and H. Katori, Recoil-free spectroscopy of neutral Sr atoms in the Lamb–Dicke regime, Phys. Rev. Lett. 91, 053001 (2003)
CrossRef ADS Google scholar
[111]
S. Ye, X. Zhang, T. C. Killian, F. B. Dunning, M. Hiller, S. Yoshida, S. Nagele, and J. Burgdörfer, Production of very-high-n strontium Rydberg atoms, Phys. Rev. A 88, 043430 (2013)
CrossRef ADS Google scholar
[112]
C. Gaul, B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, and T. Pohl, Resonant Rydberg dressing of alkaline-earth atoms via electromagnetically induced transparency, Phys. Rev. Lett. 116, 243001 (2016)
CrossRef ADS Google scholar
[113]
M. N. Winchester, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, Magnetically Induced optical transparency on a forbidden transition in strontium for cavityenhanced spectroscopy, Phys. Rev. Lett. 118, 263601 (2017)
CrossRef ADS Google scholar
[114]
R. Ding, J. D. Whalen, S. K. Kanungo, T. C. Killian, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Spectroscopy of Sr87 triplet Rydberg states, Phys. Rev. A 98, 042505 (2018)
CrossRef ADS Google scholar
[115]
H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, Oscillator strengths and radiative branching ratios in atomic Sr, Phys. Rev. A 46, 1248 (1992)
CrossRef ADS Google scholar
[116]
C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Longrange Rydberg–Rydberg interactions in calcium, strontium and ytterbium, J. Phys. B: At. Mol. Opt. Phys. 45, 135004 (2012)
CrossRef ADS Google scholar
[117]
C. L. Vaillant, M. P. Jones, and R. M. Potvliege, Multichannel quantum defect theory of strontium bound Rydberg states, J. Phys. B: At. Mol. Opt. Phys. 47, 155001 (2014)
CrossRef ADS Google scholar
[118]
F. B. Dunning, T. C. Killian, S. Yoshida, and J. Burgdörfer, Recent advances in Rydberg physics using alkalineearth atoms, J. Phys. B 49, 112003 (2016)
CrossRef ADS Google scholar
[119]
F. Robicheaux, Calculations of long range interactions for 87Sr Rydberg states, J. Phys. B 52, 244001 (2019)
CrossRef ADS Google scholar
[120]
R. Mukherjee, J. Millen, R. Nath, M. P. Jones, and T. Pohl, Many-body physics with alkaline-earth Rydberg lattices, J. Phys. B 44, 184010 (2011)
CrossRef ADS Google scholar
[121]
X. Zhang, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Rydberg blockade effects at n∼ 300 instrontium, Phys. Rev. A 92, 051402(R) (2015)
CrossRef ADS Google scholar
[122]
B. J. DeSalvo, J. A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K. R. A. Hazzard, F. B. Dunning, and T. C. Killian, Rydberg–blockade effectsin Autler–Townes spectra of ultracold strontium, Phys. Rev. A 93, 022709 (2016)
CrossRef ADS Google scholar
[123]
S. Yoshida, J. Burgdörfer, X. Zhang, and F. B. Dunning, Rydberg blockade in a hot atomic beam, Phy. Rev. A 95, 042705 (2017)
CrossRef ADS Google scholar
[124]
J. E. Sansonetti and G. Nave, Wavelengths, transition probabilities, and energy levels for the spectrum of neutral strontium (Sr I), J. Phys. Chem. Ref. Data 39, 033103 (2010)
CrossRef ADS Google scholar
[125]
R. J. Fonck, F. L. Roesler, D. H. Tracy, K. T. Lu, F. S. Tomkins, and W. R. S. Garton, Atomic diamagnetism and diamagnetically induced configuration mixing in laser-excited barium, Phys. Rev. Lett. 39, 1513 (1977)
CrossRef ADS Google scholar
[126]
C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98, 023002 (2007)
CrossRef ADS Google scholar
[127]
T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104, 013001 (2010)
CrossRef ADS Google scholar
[128]
S.-L. Su, F.-Q. Guo, J.-L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications, EPL 131, 53001 (2020)
CrossRef ADS Google scholar
[129]
A. Lurio, M. Mandel, and R. Novick, Second-order hyperfineand Zeeman corrections for an (sl) configuration, Phys. Rev. 126, 1758 (1962)
CrossRef ADS Google scholar
[130]
D. W. Fang, W. J. Xie, Y. Zhang, X. Hu, and Y. Y. Liu, Radiative lifetimes of Rydberg state of ytterbium, J. Quant. Spectrosc. Ra. 69, 469 (2001)
CrossRef ADS Google scholar
[131]
J. P. Covey, A. Sipahigil, and M. Saffman, Microwavetooptical conversion via four-wave mixing in a cold ytterbium ensemble, Phys. Rev. A 100, 012307 (2019)
CrossRef ADS Google scholar
[132]
D. A. Steck, Quantum and Atom Optics, http //steck.us/ teaching
[133]
T. G. Walker and M. Saffman, Consequences of Zeemandegeneracy for the van der Waals blockade between Rydberg atoms, Phys. Rev. A 77, 032723 (2008)
CrossRef ADS Google scholar
[134]
T. Zelevinsky, M. M. Boyd, A. D. Ludlow, T. Ido, J. Ye, R. Ciury lo, P. Naidon, and P. S. Julienne, Narrow line photo association in an optical lattice, Phys. Rev. Lett. 96, 203201 (2006)
CrossRef ADS Google scholar
[135]
J. Millen, G. Lochead, and M. P. A. Jones, Two electron excitation of an interacting cold Rydberg gas, Phys. Rev. Lett. 105, 213004 (2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(861 KB)

Accesses

Citations

Detail

Sections
Recommended

/