Testing fundamental physics with astrophysical transients

Jun-Jie Wei, Xue-Feng Wu

PDF(1656 KB)
PDF(1656 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 44300. DOI: 10.1007/s11467-021-1049-x
REVIEW ARTICLE
REVIEW ARTICLE

Testing fundamental physics with astrophysical transients

Author information +
History +

Abstract

Explosive astrophysical transients at cosmological distances can be used to place precision tests of the basic assumptions of relativity theory, such as Lorentz invariance, the photon zero-mass hypothesis, and the weak equivalence principle (WEP). Signatures of Lorentz invariance violations (LIV) include vacuum dispersion and vacuum birefringence. Sensitive searches for LIV using astrophysical sources such as gamma-ray bursts, active galactic nuclei, and pulsars are discussed. The most direct consequence of a nonzero photon rest mass is a frequency dependence in the velocity of light propagating in vacuum. A detailed representation of how to obtain a combined severe limit on the photon mass using fast radio bursts at different redshifts through the dispersion method is presented. The accuracy of the WEP has been well tested based on the Shapiro time delay of astrophysical messengers traveling through a gravitational field. Some caveats of Shapiro delay tests are discussed. In this article, we review and update the status of astrophysical tests of fundamental physics.

Keywords

astroparticle physics / gravitation / astrophysical transients

Cite this article

Download citation ▾
Jun-Jie Wei, Xue-Feng Wu. Testing fundamental physics with astrophysical transients. Front. Phys., 2021, 16(4): 44300 https://doi.org/10.1007/s11467-021-1049-x

References

[1]
R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys. Rev. D 59(12), 124021 (1999)
CrossRef ADS Google scholar
[2]
J. Alfaro, H. A. Morales-Tecotl, and L. F. Urrutia, Loop quantum gravity and light propagation, Phys. Rev. D 65(10), 103509 (2002)
CrossRef ADS Google scholar
[3]
G. Amelino-Camelia and D. V. Ahluwalia, Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, Int. J. Mod. Phys. D 11(01), 35 (2002)
CrossRef ADS Google scholar
[4]
G. Amelino-Camelia, Special treatment, Nature 418(6893), 34 (2002)
CrossRef ADS Google scholar
[5]
J. Kowalski-Glikman, and S. Nowak, Doubly special relativity theories as different bases of κ-Poincaré algebra, Phys. Lett. B 539(1–2), 126 (2002)
CrossRef ADS Google scholar
[6]
J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67(4), 044017 (2003)
CrossRef ADS Google scholar
[7]
V. A. Kostelecký and S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D 39(2), 683 (1989)
CrossRef ADS Google scholar
[8]
V. Alan Kostelecký and R. Potting, CPT and strings, Nucl. Phys. B 359(2–3), 545 (1991)
CrossRef ADS Google scholar
[9]
V. A. Kostelecký and R. Potting, CPT, strings, and meson factories, Phys. Rev. D 51(7), 3923 (1995)
CrossRef ADS Google scholar
[10]
D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Relativ. 8(1), 5 (2005)
CrossRef ADS Google scholar
[11]
R. Bluhm, Overview of the standard model extension: Implications and phenomenology of Lorentz violation, Special Relativity 702, 191 (2006)
CrossRef ADS Google scholar
[12]
G. Amelino-Camelia, Quantum-spacetime phenomenology, Living Rev. Relativ. 16(1), 5 (2013)
CrossRef ADS Google scholar
[13]
J. D. Tasson, What do we know about Lorentz invariance? Rep. Prog. Phys. 77(6), 062901 (2014)
CrossRef ADS Google scholar
[14]
V. A. Kostelecký and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83(1), 11 (2011)
CrossRef ADS Google scholar
[15]
V. A. Kostelecký and M. Mewes, Astrophysical tests of Lorentz and CPT violation with Photons, Astrophys. J. 689(1), L1 (2008)
CrossRef ADS Google scholar
[16]
G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Tests of quantum gravity from observations of γ-ray bursts, Nature 393, 763 (1998)
CrossRef ADS Google scholar
[17]
T. G. Pavlopoulos, Are we observing Lorentz violation in gamma ray bursts? Phys. Lett. B 625(1–2), 13 (2005)
CrossRef ADS Google scholar
[18]
J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sakharov, and E. K. G. Sarkisyan, Robust limits on Lorentz violation from gamma-ray bursts, Astropart. Phys. 25(6), 402 (2006)
CrossRef ADS Google scholar
[19]
U. Jacob and T. Piran, Lorentz-violation-induced arrival delays of cosmological particles, J. Cosmol. Astropart. Phys. 01, 031 (2008)
CrossRef ADS Google scholar
[20]
V. A. Kostelecký and M. Mewes, Electrodynamics with Lorentz-violating operators of arbitrary dimension, Phys. Rev. D 80(1), 015020 (2009)
CrossRef ADS Google scholar
[21]
A. A. Abdo, M. Ackermann, M. Arimoto, et al., Fermi observations of high-energy gamma-ray emission from GRB 080916C, Science 323(5922), 1688 (2009)
[22]
A. A. Abdo, M. Ackermann, M. Ajello, et al., A limit on the variation of the speed of light arising from quantum gravity effects, Nature 462(7271), 331 (2009)
[23]
Z. Chang, Y. Jiang, and H. N. Lin, A unified constraint on the Lorentz invariance violation from both short and long GRBs, Astropart. Phys. 36(1), 47 (2012)
CrossRef ADS Google scholar
[24]
R. J. Nemiroff, R. Connolly, J. Holmes, and A. B. Kostinski, Bounds on spectral dispersion from Fermi-detected gamma ray bursts, Phys. Rev. Lett. 108(23), 231103 (2012)
CrossRef ADS Google scholar
[25]
V. Vasileiou, A. Jacholkowska, F. Piron, J. Bolmont, C. Couturier, J. Granot, F. W. Stecker, J. Cohen-Tanugi, and F. Longo, Constraints on Lorentz invariance violation from Fermi- Large area telescope observations of gammaray bursts, Phys. Rev. D 87(12), 122001 (2013)
CrossRef ADS Google scholar
[26]
J. Ellis and N. E. Mavromatos, Probes of Lorentz violation, Astropart. Phys. 43, 50 (2013)
CrossRef ADS Google scholar
[27]
F. Kislat and H. Krawczynski, Search for anisotropic Lorentz invariance violation with γ-rays, Phys. Rev. D 92(4), 045016 (2015)
CrossRef ADS Google scholar
[28]
S. Zhang and B. Q. Ma, Lorentz violation from gammaray bursts, Astropart. Phys. 61, 108 (2015)
CrossRef ADS Google scholar
[29]
J. J. Wei, B. B. Zhang, L. Shao, X. F. Wu, and P. Meszaros, A new test of Lorentz invariance violation: The spectral lag transition of GRB 160625B, Astrophys. J. 834(2), L13 (2017)
CrossRef ADS Google scholar
[30]
J. J. Wei, X. F. Wu, B. B. Zhang, L. Shao, P. Meszaros, and V. A. Kostelecky, Constraining anisotropic Lorentz violation via the spectral-lag transition of GRB 160625B, Astrophys. J. 842(2), 115 (2017)
CrossRef ADS Google scholar
[31]
J. J. Wei and X. F. Wu, A further test of Lorentz violation from the rest-frame spectral lags of gamma-ray bursts, Astrophys. J. 851(2), 127 (2017)
CrossRef ADS Google scholar
[32]
J. Ellis, R. Konoplich, N. E. Mavromatos, L. Nguyen, A. S. Sakharov, and E. K. Sarkisyan-Grinbaum, Robust constraint on Lorentz violation using Fermi-LAT gammaray burst data, Phys. Rev. D 99(8), 083009 (2019)
CrossRef ADS Google scholar
[33]
V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, D. Baack, et al., Bounds on Lorentz invariance violation from magic observation of GRB 190114C, Phys. Rev. Lett. 125(2), 021301 (2020)
[34]
S. D. Biller, A. C. Breslin, J. Buckley, M. Catanese, M. Carson, D. A. Carter-Lewis, M. F. Cawley, D. J. Fegan, J. P. Finley, J. A. Gaidos, A. M. Hillas, F. Krennrich, R. C. Lamb, R. Lessard, C. Masterson, J. E. McEnery, B. McKernan, P. Moriarty, J. Quinn, H. J. Rose, F. Samuelson, G. Sembroski, P. Skelton, and T. C. Weekes, Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies, Phys. Rev. Lett. 83(11), 2108 (1999)
CrossRef ADS Google scholar
[35]
P. Kaaret, Pulsar radiation and quantum gravity, Astron. Astrophys. 345, L32 (1999)
[36]
S. M. Carroll, G. B. Field, and R. Jackiw, Limits on a Lorentz- and parity-violating modification of electrodynamics, Phys. Rev. D 41(4), 1231 (1990)
CrossRef ADS Google scholar
[37]
D. Colladay and V. A. Kostelecky, Lorentz-violating extension of the standard model, Phys. Rev. D 58(11), 116002 (1998)
CrossRef ADS Google scholar
[38]
R. J. Gleiser and C. N. Kozameh, Astrophysical limits on quantum gravity motivated birefringence, Phys. Rev. D 64(8), 083007 (2001)
CrossRef ADS Google scholar
[39]
V. A. Kostelecký and M. Mewes, Cosmological constraints on Lorentz violation in electrodynamics, Phys. Rev. Lett. 87(25), 251304 (2001)
CrossRef ADS Google scholar
[40]
V. A. Kostelecký and M. Mewes, Sensitive polarimetric search for relativity violations in gamma-ray bursts, Phys. Rev. Lett. 97(14), 140401 (2006)
CrossRef ADS Google scholar
[41]
V. A. Kostelecký and M. Mewes, Lorentz-violating electrodynamics and the cosmic microwave background, Phys. Rev. Lett. 99(1), 011601 (2007)
CrossRef ADS Google scholar
[42]
V. A. Kostelecký and M. Mewes, Constraints on relativity violations from gamma-ray bursts, Phys. Rev. Lett. 110(20), 201601 (2013)
CrossRef ADS Google scholar
[43]
I. G. Mitrofanov, A constraint on canonical quantum gravity? Nature 426, 139 (2003)
CrossRef ADS Google scholar
[44]
T. Jacobson, S. Liberati, D. Mattingly, and F. W. Stecker, New limits on Planck scale Lorentz violation in QED, Phys. Rev. Lett. 93(2), 021101 (2004)
CrossRef ADS Google scholar
[45]
Y. Z. Fan, D. M. Wei, and D. Xu, γ-ray burst ultraviolet/ optical afterglow polarimetry as a probe of quantum gravity, Mon. Not. R. Astron. Soc. 376(4), 1857 (2007)
CrossRef ADS Google scholar
[46]
G. Gubitosi, L. Pagano, G. Amelino-Camelia, A. Melchiorri, and A. Cooray, A constraint on Planck-scale modifications to electrodynamics with CMB polarization data, J. Cosmol. Astropart. Phys. 08, 021 (2009)
CrossRef ADS Google scholar
[47]
P. Laurent, D. Gotz, P. Binetruy, S. Covino, and A. Fernandez-Soto, Constraints on Lorentz invariance violation using integral/IBIS observations of GRB041219A, Phys. Rev. D 83(12), 121301 (2011)
CrossRef ADS Google scholar
[48]
F. W. Stecker, A new limit on Planck scale Lorentz violation from γ-ray burst polarization, Astropart. Phys. 35(2), 95 (2011)
CrossRef ADS Google scholar
[49]
K. Toma, S. Mukohyama, D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, Y. Morihara, T. Sakashita, T. Takahashi, Y. Wakashima, H. Yonemochi, and N. Toukairin, Strict limit on CPT violation from polarization of γ-ray bursts, Phys. Rev. Lett. 109(24), 241104 (2012)
CrossRef ADS Google scholar
[50]
D. Götz, S. Covino, A. Fernandez-Soto, P. Laurent, and Ž. Bošnjak, The polarized gamma-ray burst GRB 061122, Mon. Not. R. Astron. Soc. 431(4), 3550 (2013)
CrossRef ADS Google scholar
[51]
D. Götz, P. Laurent, S. Antier, S. Covino, P. D’Avanzo, V. D’Elia, and A. Melandri, GRB 140206A: the most distant polarized gamma-ray burst, Mon. Not. R. Astron. Soc. 444, 2776 (2014)
CrossRef ADS Google scholar
[52]
H. N. Lin, X. Li, and Z. Chang, Gamma-ray burst polarization reduction induced by the Lorentz invariance violation, Mon. Not. R. Astron. Soc. 463(1), 375 (2016)
CrossRef ADS Google scholar
[53]
F. Kislat and H. Krawczynski, Planck-scale constraints on anisotropic Lorentz and CPT invariance violations from optical polarization measurements, Phys. Rev. D 95(8), 083013 (2017)
CrossRef ADS Google scholar
[54]
A. S. Friedman, D. Leon, K. D. Crowley, D. Johnson, G. Teply, D. Tytler, B. G. Keating, and G. M. Cole, Constraints on Lorentz invariance and CPT violation using optical photometry and polarimetry of active galaxies BL Lacertae and S5 B 0716+ 714, Phys. Rev. D 99(3), 035045 (2019)
CrossRef ADS Google scholar
[55]
J. J. Wei, New constraints on Lorentz invariance violation with polarized gamma-ray bursts, Mon. Not. R. Astron. Soc. 485(2), 2401 (2019)
CrossRef ADS Google scholar
[56]
A. S. Goldhaber and M. M. Nieto, Terrestrial and extraterrestrial limits on the photon mass, Rev. Mod. Phys. 43(3), 277 (1971)
CrossRef ADS Google scholar
[57]
L. C. Tu, J. Luo, and G. T. Gillies, The mass of the photon, Rep. Prog. Phys. 68(1), 77 (2005)
CrossRef ADS Google scholar
[58]
L. B. Okun, Photon: History, mass, charge, Acta Phys. Pol. B 37(3), 565 (2006)
[59]
A. S. Goldhaber and M. M. Nieto, Photon and graviton mass limits, Rev. Mod. Phys. 82(1), 939 (2010)
CrossRef ADS Google scholar
[60]
G. Spavieri, J. Quintero, G. T. Gillies, and M. Rodriguez, A survey of existing and proposed classical and quantum approaches to the photon mass, Eur. Phys. J. D 61(3), 531 (2011)
CrossRef ADS Google scholar
[61]
B. Lovell, F. L. Whipple, and L. H. Solomon, Relative velocity of light and radio waves in space, Nature 202 (4930), 377 (1964)
CrossRef ADS Google scholar
[62]
B. Warner and R. E. Nather, Wavelength independence of the velocity of light in space, Nature 222(5189), 157 (1969)
CrossRef ADS Google scholar
[63]
B. E. Schaefer, Severe limits on variations of the speed of light with frequency, Phys. Rev. Lett. 82(25), 4964 (1999)
CrossRef ADS Google scholar
[64]
B. Zhang, Y. T. Chai, Y. C. Zou, and X. F. Wu, Constraining the mass of the photon with gamma-ray bursts, J. High Energy Astrophys. 11–12, 20 (2016)
CrossRef ADS Google scholar
[65]
J. J. Wei, E. K. Zhang, S. B. Zhang, and X. F. Wu, New limits on the photon mass with radio pulsars in the Magellanic clouds, Res. Astron. Astrophys. 17(2), 13 (2017)
CrossRef ADS Google scholar
[66]
X. F. Wu, S. B. Zhang, H. Gao, J. J. Wei, Y. C. Zou, W. H. Lei, B. Zhang, Z. G. Dai, and P. Meszaros, Constraints on the photon mass with fast radio bursts, Astrophys. J. 822(1), L15 (2016)
CrossRef ADS Google scholar
[67]
L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, Photon mass limits from fast radio bursts, Phys. Lett. B 757, 548 (2016)
CrossRef ADS Google scholar
[68]
L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K. Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, FRB 121102 casts new light on the photon mass, Phys. Lett. B 768, 326 (2017)
CrossRef ADS Google scholar
[69]
L. Shao and B. Zhang, Bayesian framework to constrain the photon mass with a catalog of fast radio bursts, Phys. Rev. D 95(12), 123010 (2017)
CrossRef ADS Google scholar
[70]
J. J. Wei and X. F. Wu, Robust limits on photon mass from statistical samples of extragalactic radio pulsars, J. Cosmol. Astropart. Phys. 07, 045 (2018)
CrossRef ADS Google scholar
[71]
N. Xing, H. Gao, J. J. Wei, Z. Li, W. Wang, B. Zhang, X. F. Wu, and P. Meszaros, Limits on the weak equivalence principle and photon mass with FRB 121102 subpulses, Astrophys. J. 882(1), L13 (2019)
CrossRef ADS Google scholar
[72]
J. J. Wei and X. F. Wu, Combined limit on the photon mass with nine localized fast radio bursts, Res. Astron. Astrophys. 20(12), 206 (2020)
CrossRef ADS Google scholar
[73]
E. R. Williams, J. E. Faller, and H. A. Hill, New experimental test of Coulomb’s law: A laboratory upper limit on the photon rest mass, Phys. Rev. Lett. 26(12), 721 (1971)
CrossRef ADS Google scholar
[74]
M. A. Chernikov, C. J. Gerber, H. R. Ott, and H. J. Gerber, Low-temperature upper limit of the photon mass: Experimental null test of Ampère’s law, Phys. Rev. Lett. 68(23), 3383 (1992)
CrossRef ADS Google scholar
[75]
R. Lakes, Experimental limits on the photon mass and cosmic magnetic vector potential, Phys. Rev. Lett. 80(9), 1826 (1998)
CrossRef ADS Google scholar
[76]
A. S. Goldhaber and M. M. Nieto, Problems of the rotating-torsion-balance limit on the photon mass, Phys. Rev. Lett. 91(14), 149101 (2003)
CrossRef ADS Google scholar
[77]
J. Luo, L. C. Tu, Z. K. Hu, and E. J. Luan, New experimental limit on the photon rest mass with a rotating torsion balance, Phys. Rev. Lett. 90(8), 081801 (2003)
CrossRef ADS Google scholar
[78]
J. Luo, L. C. Tu, Z. K. Hu, and E. J. Luan, Luo et al. reply, Phys. Rev. Lett. 91(14), 149102 (2003)
CrossRef ADS Google scholar
[79]
D. D. Lowenthal, Limits on the photon mass, Phys. Rev. D 8(8), 2349 (1973)
CrossRef ADS Google scholar
[80]
A. Accioly and R. Paszko, Photon mass and gravitational deflection, Phys. Rev. D 69(10), 107501 (2004)
CrossRef ADS Google scholar
[81]
L. Davis, A. S. Goldhaber, and M. M. Nieto, Limit on the photon mass deduced from pioneer-10 observations of Jupiter’s magnetic field, Phys. Rev. Lett. 35(21), 1402 (1975)
CrossRef ADS Google scholar
[82]
D. D. Ryutov, The role of finite photon mass in magnetohydrodynamics of space plasmas, Plasma Phys. Contr. Fusion 39(5A), A73 (1997)
CrossRef ADS Google scholar
[83]
D. D. Ryutov, Using plasma physics to weigh the photon, Plasma Phys. Contr. Fusion 49(12B), B429 (2007)
CrossRef ADS Google scholar
[84]
A. Retinò, A. D. A. M. Spallicci, and A. Vaivads, Solar wind test of the de Broglie-Proca massive photon with Cluster multi-spacecraft data, Astropart. Phys. 82, 49 (2016)
CrossRef ADS Google scholar
[85]
Y. Yamaguchi, A composite theory of elementary particles, Prog. Theor. Phys. Suppl. 11, 1 (1959)
CrossRef ADS Google scholar
[86]
G. V. Chibisov, Astrophysical upper limits on the photon rest mass, Sov. Phys. Usp. 19(7), 624 (1976)
CrossRef ADS Google scholar
[87]
E. Adelberger, G. Dvali, A. Gruzinov, Photon-mass bound destroyed by vortices, Phys. Rev. Lett. 98, 010402 (2007)
CrossRef ADS Google scholar
[88]
P. Pani, V. Cardoso, L. Gualtieri, E. Berti, and A. Ishibashi, Black-hole bombs and photon-mass bounds, Phys. Rev. Lett. 109(13), 131102 (2012)
CrossRef ADS Google scholar
[89]
Y. P. Yang and B. Zhang, Tight constraint on photon mass from pulsar spindown, Astrophys. J. 842(1), 23 (2017)
CrossRef ADS Google scholar
[90]
C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativ. 9(1), 3 (2006)
CrossRef ADS Google scholar
[91]
C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativ. 17(1), 4 (2014)
CrossRef ADS Google scholar
[92]
S. B. Lambert and C. Le Poncin-Lafitte, Determining the relativistic parameter γ using very long baseline interferometry, Astron. Astrophys. 499(1), 331 (2009)
CrossRef ADS Google scholar
[93]
S. B. Lambert and C. Le Poncin-Lafitte, Improved determination of γ by VLBI, Astron. Astrophys. 529, A70 (2011)
CrossRef ADS Google scholar
[94]
B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425(6956), 374 (2003)
CrossRef ADS Google scholar
[95]
I. I. Shapiro, Fourth test of general relativity, Phys. Rev. Lett. 13(26), 789 (1964)
CrossRef ADS Google scholar
[96]
M. J. Longo, New precision tests of the Einstein equivalence principle from Sn1987a, Phys. Rev. Lett. 60(3), 173 (1988)
CrossRef ADS Google scholar
[97]
L. M. Krauss and S. Tremaine, Test of the weak equivalence principle for neutrinos and photons, Phys. Rev. Lett. 60(3), 176 (1988)
CrossRef ADS Google scholar
[98]
H. Gao, X. F. Wu, and P. Meszaros, Cosmic transients test Einstein’s equivalence principle out to GeV energies, Astrophys. J. 810(2), 121 (2015)
CrossRef ADS Google scholar
[99]
J. J. Wei, H. Gao, X. F. Wu, and P. Meszaros, Testing Einstein’s Equivalence Principle With Fast Radio Bursts, Phys. Rev. Lett. 115(26), 261101 (2015)
CrossRef ADS Google scholar
[100]
X. F. Wu, H. Gao, J. J. Wei, P. Meszaros, B. Zhang, Z. G. Dai, S. N. Zhang, and Z. H. Zhu, Testing Einstein’s weak equivalence principle with gravitational waves, Phys. Rev. D 94(2), 024061 (2016)
CrossRef ADS Google scholar
[101]
C. Yang, Y. C. Zou, Y. Y. Zhang, B. Liao, and W. H. Lei, Testing the Einstein’s equivalence principle with polarized gamma-ray bursts, Mon. Not. R. Astron. Soc. 469(1), L36 (2017)
CrossRef ADS Google scholar
[102]
J. J. Wei and X. F. Wu, Precision test of the weak equivalence principle from gamma-ray burst polarization, Phys. Rev. D 99(10), 103012 (2019)
CrossRef ADS Google scholar
[103]
L. Smolin, How far are we from the quantum theory of gravity? arXiv: hep-th/0303185 (2003)
[104]
C. Rovelli, Loop quantum gravity, Living Rev. Relativ. 1(1), 1 (1998)
CrossRef ADS Google scholar
[105]
L. Burderi, A. Sanna, T. Di Salvo, L. Amati, G. Amelino-Camelia, et al., ESA Voyage 2050 white paper – GrailQuest: Hunting for atoms of space and time hidden in the wrinkle of space-time, arXiv: 1911.02154 (2019)
[106]
J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sakharov, and E. K. G. Sarkisyan, Corrigendum to“Robust limits on Lorentz violation from gamma-ray bursts” [Astropart. Phys. 25, 402 (2006)], Astropart. Phys. 29(2), 158 (2008)
CrossRef ADS Google scholar
[107]
J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and A. S. Sakharov, Quantum-gravity analysis of gamma-ray bursts using wavelets, Astron. Astrophys. 402(2), 409 (2003)
CrossRef ADS Google scholar
[108]
S. E. Boggs, C. B. Wunderer, K. Hurley, and W. Coburn, Testing Lorentz Invariance with GRB 021206, Astrophys. J. 611(2), L77 (2004)
CrossRef ADS Google scholar
[109]
M. Rodriguez Martinez, T. Piran, Y. Oren, GRB 051221A and tests of Lorentz symmetry, J. Cosmol. Astropart. Phys. 05, 017 (2006)
CrossRef ADS Google scholar
[110]
J. Bolmont, A. Jacholkowska, J. L. Atteia, F. Piron, and G. Pizzichini, Study of time lags in HETE‐2γ-ray bursts with redshift: Search for astrophysical effects and a quantum gravity signature, Astrophys. J. 676(1), 532 (2008)
CrossRef ADS Google scholar
[111]
R. Lamon, N. Produit, and F. Steiner, Study of Lorentz violation in INTEGRAL gamma-ray bursts, Gen. Relativ. Gravit. 40(8), 1731 (2008)
CrossRef ADS Google scholar
[112]
Z. Xiao and B. Q. Ma, Constraints on Lorentz invariance violation from gamma-ray burst GRB090510, Phys. Rev. D 80(11), 116005 (2009)
CrossRef ADS Google scholar
[113]
L. Shao, Z. Xiao, and B. Q. Ma, Lorentz violation from cosmological objects with very high energy photon emissions, Astropart. Phys. 33(5–6), 312 (2010)
CrossRef ADS Google scholar
[114]
H. Xu and B. Q. Ma, Light speed variation from gammaray bursts, Astropart. Phys. 82, 72 (2016)
CrossRef ADS Google scholar
[115]
H. Xu and B. Q. Ma, Light speed variation from gamma ray burst GRB 160509A, Phys. Lett. B 760, 602 (2016)
CrossRef ADS Google scholar
[116]
H. Xu and B. Q. Ma, Regularity of high energy photon events from gamma ray bursts, J. Cosmol. Astropart. Phys. 01, 050 (2018)
CrossRef ADS Google scholar
[117]
Y. Liu and B. Q. Ma, Light speed variation from gamma ray bursts: Criteria for low energy photons, Eur. Phys. J. C 78(10), 825 (2018)
CrossRef ADS Google scholar
[118]
V. A. Acciari, S. Ansoldi, et al. [MAGIC Collaboration], Teraelectronvolt emission from the γ-ray burst GRB 190114C, Nature 575(7783), 455 (2019)
CrossRef ADS Google scholar
[119]
M. Biesiada and A. Piorkowska, Lorentz invariance violation-induced time delays in GRBs in different cosmological models, Class. Quantum Gravity 26(12), 125007 (2009)
CrossRef ADS Google scholar
[120]
Y. Pan, Y. Gong, S. Cao, H. Gao, and Z. H. Zhu, Constraints on the Lorentz invariance violation with gammaray bursts via a Markov chain Monte Carlo approach, Astrophys. J. 808(1), 78 (2015)
CrossRef ADS Google scholar
[121]
X. B. Zou, H. K. Deng, Z. Y. Yin, and H. Wei, Modelindependent constraints on Lorentz invariance violation via the cosmographic approach, Phys. Lett. B 776, 284 (2018)
CrossRef ADS Google scholar
[122]
Y. Pan, J. Qi, S. Cao, T. Liu, Y. Liu, S. Geng, Y. Lian, and Z. H. Zhu, Model-independent constraints on Lorentz invariance violation: Implication from updated gammaray burst observations, Astrophys. J. 890(2), 169 (2020)
CrossRef ADS Google scholar
[123]
T. N. Ukwatta, K. S. Dhuga, M. Stamatikos, C. D. Dermer, T. Sakamoto, E. Sonbas, W. C. Parke, L. C. Maximon, J. T. Linnemann, P. N. Bhat, A. Eskandarian, N. Gehrels, A. U. Abeysekara, K. Tollefson, and J. P. Norris, The lag-luminosity relation in the GRB source frame: An investigation with Swift BAT bursts, Mon. Not. R. Astron. Soc. 419(1), 614 (2012)
CrossRef ADS Google scholar
[124]
M. G. Bernardini, G. Ghirlanda, S. Campana, S. Covino, R. Salvaterra, J. L. Atteia, D. Burlon, G. Calderone, P. D’Avanzo, V. D’Elia, G. Ghisellini, V. Heussaff, D. Lazzati, A. Meland ri, L. Nava, S. D. Vergani, and G. Tagliaferri, Comparing the spectral lag of short and long gamma-ray bursts and its relation with the luminosity, Mon. Not. R. Astron. Soc. 446(2), 1129 (2015)
CrossRef ADS Google scholar
[125]
Z. Chang, X. Li, H. N. Lin, Y. Sang, P. Wang, and S. Wang, Constraining Lorentz invariance violation from the continuous spectra of short gamma-ray bursts, Chin. Phys. C 40(4), 045102 (2016)
CrossRef ADS Google scholar
[126]
L. Shao, B. B. Zhang, F. R. Wang, X. F. Wu, Y. H. Cheng, X. Zhang, B. Y. Yu, B. J. Xi, X. Wang, H. X. Feng, M. Zhang, and D. Xu, A new measurement of the spectral lag of gamma-ray bursts and its implications for spectral evolution behaviors, Astrophys. J. 844(2), 126 (2017)
CrossRef ADS Google scholar
[127]
R. J. Lu, Y. F. Liang, D. B. Lin, J. Lu, X. G. Wang, H. J. Lu, H. B. Liu, E. W. Liang, and B. Zhang, A comprehensive analysis of Fermi gamma-ray burst data (IV): Spectral lag and its relation to Ep evolution, Astrophys. J. 865(2), 153 (2018)
CrossRef ADS Google scholar
[128]
J. Albert, E. Aliu, et al. [MAGIC Collaboration], Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope, Phys. Lett. B 668(4), 253 (2008)
[129]
M. Martínez and M. Errando, A new approach to study energy-dependent arrival delays on photons from astrophysical sources, Astropart. Phys. 31(3), 226 (2009)
CrossRef ADS Google scholar
[130]
H. Abdalla, F. Aharonian, F. A. Benkhali, E. O. Angüner, M. Arakawa, et al., The 2014 TeV γ-ray flare of MRK 501 seen with H.E.S.S.: Temporal and spectral constraints on lorentz invariance violation, Astrophys. J. 870(2), 93 (2019)
[131]
F. Aharonian, A. G. Akhperjanian, U. Barres de Almeida, et al., Limits on an energy dependence of the speed of light from a flare of the active galaxy PKS 2155-304, Phys. Rev. Lett. 101(17), 170402 (2008)
[132]
A. Abramowski, F. Acero, et al. [H.E.S.S. Collaboration], Search for Lorentz invariance breaking with a likelihood fit of the PKS 2155–304 flare data taken on MJD 53944, Astropart. Phys. 34(9), 738 (2011)
[133]
N. Otte, in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 7 (2011), International Cosmic Ray Conference, Vol. 7, p. 256
[134]
B. Zitzer, in: International Cosmic Ray Conference, International Cosmic Ray Conference, Vol. 33 (2013), International Cosmic Ray Conference, Vol. 33, p. 2768
[135]
M. L. Ahnen, S. Ansoldi, et al. [MAGIC Collaboration], Constraining Lorentz invariance violation using the crab pulsar emission observed up to TeV energies by MAGIC, Astrophys. J. Suppl. 232(1), 9 (2017)
[136]
R. C. Myers and M. Pospelov, Ultraviolet modifications of dispersion relations in effective field theory, Phys. Rev. Lett. 90(21), 211601 (2003)
CrossRef ADS Google scholar
[137]
W. Coburn and S. E. Boggs, Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002, Nature 423, 415 (2003)
CrossRef ADS Google scholar
[138]
R. E. Rutledge and D. B. Fox, Re-analysis of polarization in the γ-ray flux of GRB 021206, Mon. Not. R. Astron. Soc. 350(4), 1288 (2004)
CrossRef ADS Google scholar
[139]
C. Wigger, W. Hajdas, K. Arzner, M. Gudel, and A. Zehnder, Gamma‐ray burst polarization: Limits from RHESSI measurements, Astrophys. J. 613(2), 1088 (2004)
CrossRef ADS Google scholar
[140]
L. Maccione, S. Liberati, A. Celotti, J. G. Kirk, and P. Ubertini, γ-ray polarization constraints on Planck scale violations of special relativity, Phys. Rev. D 78(10), 103003 (2008)
CrossRef ADS Google scholar
[141]
E. Kalemci, S. E. Boggs, C. Kouveliotou, M. Finger, and M. G. Baring, Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL, Astrophys. J. 75(Suppl. 169) (2007)
CrossRef ADS Google scholar
[142]
S. McGlynn, D. J. Clark, A. J. Dean, L. Hanlon, S. McBreen, D. R. Willis, B. McBreen, A. J. Bird, and S. Foley, Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the spectrometer aboard INTEGRAL, Astron. Astrophys. 466(3), 895 (2007)
CrossRef ADS Google scholar
[143]
D. Götz, P. Laurent, F. Lebrun, F. Daigne, and Ž. Bošnjak, Variable polarization measured in the prompt emission of GRB 041219a using IBIS on board integral, Astrophys. J. 695(2), L208 (2009)
CrossRef ADS Google scholar
[144]
D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, T. Sakashita, Y. Morihara, T. Takahashi, N. Toukairin, H. Fujimoto, Y. Kodama, and S. Kubo, Detection of gamma-ray polarization in prompt emission of GRB 100826a, Astrophys. J. 743(2), L30 (2011)
CrossRef ADS Google scholar
[145]
D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, Y. Morihara, T. Takahashi, Y. Wakashima, H. Yonemochi, T. Sakashita, N. Toukairin, H. Fujimoto, and Y. Kodama, Magnetic structures in gamma-ray burst jets probed by gamma-ray polarization, Astrophys. J. 758(1), L1 (2012)
CrossRef ADS Google scholar
[146]
H. K. Vedantham, V. Ravi, K. Mooley, D. Frail, G. Hallinan, and S. R. Kulkarni, On associating fast radio bursts with afterglows, Astrophys. J. 824(1), L9 (2016)
CrossRef ADS Google scholar
[147]
P. K. G. Williams and E. Berger, No precise localization for FRB 150418: Claimed radio transient is AGN variability, Astrophys. J. 821(2), L22 (2016)
CrossRef ADS Google scholar
[148]
S. Chatterjee, C. J. Law, R. S. Wharton, S. Burke-Spolaor, J. W. T. Hessels, et al., A direct localization of a fast radio burst and its host, Nature 541(7635), 58 (2017)
CrossRef ADS Google scholar
[149]
J. W. T. Hessels, L. G. Spitler, A. D. Seymour, J. M. Cordes, D. Michilli, et al., FRB 121102 bursts show complex time–frequency structure, Astrophys. J. 876(2), L23 (2019)
CrossRef ADS Google scholar
[150]
M. J. Bentum, L. Bonetti, and A. D. A. M. Spallicci, Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies, Adv. Space Res. 59(2), 736 (2017)
CrossRef ADS Google scholar
[151]
W. Deng and B. Zhang, Cosmological implications of fast radio burst/gamma-ray burst associations, Astrophys. J. 783(2), L35 (2014)
CrossRef ADS Google scholar
[152]
L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, et al., A repeating fast radio burst, Nature 531(7593), 202 (2016)
CrossRef ADS Google scholar
[153]
S. P. Tendulkar, C. G. Bassa, J. M. Cordes, G. C. Bower, C. J. Law, S. Chatterjee, E. A. K. Adams, S. Bogdanov, S. Burke-Spolaor, B. J. Butler, P. Demorest, J. W. T. Hessels, V. M. Kaspi, T. J. W. Lazio, N. Maddox, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, P. Scholz, A. Seymour, L. G. Spitler, H. J. van Langevelde, and R. S. Wharton, The host galaxy and redshift of the repeating fast radio burst FRB 121102, Astrophys. J. 834(2), L7 (2017)
CrossRef ADS Google scholar
[154]
B. Marcote, K. Nimmo, J. W. T. Hessels, S. P. Tendulkar, C. G. Bassa, et al., A repeating fast radio burst source localized to a nearby spiral galaxy, Nature 577(7789), 190 (2020)
CrossRef ADS Google scholar
[155]
K. W. Bannister, A. T. Deller, C. Phillips, et al., A single fast radio burst localized to a massive galaxy at cosmological distance, Science 365(6453), 565 (2019)
CrossRef ADS Google scholar
[156]
J. X. Prochaska, J. P. Macquart, M. McQuinn, S. Simha, R. M. Shannon, C. K. Day, L. Marnoch, S. Ryder, A. Deller, K. W. Bannister, S. Bhandari, R. Bordoloi, J. Bunton, H. Cho, C. Flynn, E. K. Mahony, C. Phillips, H. Qiu, and N. Tejos, The low density and magnetization of a massive galaxy halo exposed by a fast radio burst, Science 366(6462), 231 (2019)
CrossRef ADS Google scholar
[157]
V. Ravi, M. Catha, L. D’Addario, S. G. Djorgovski, G. Hallinan, R. Hobbs, J. Kocz, S. R. Kulkarni, J. Shi, H. K. Vedantham, S. Weinreb, and D. P. Woody, A fast radio burst localized to a massive galaxy, Nature 572(7769), 352 (2019)
CrossRef ADS Google scholar
[158]
J. P. Macquart, J. X. Prochaska, M. McQuinn, K. W. Bannister, S. Bhandari, C. K. Day, A. T. Deller, R. D. Ekers, C. W. James, L. Marnoch, S. Osłowski, C. Phillips, S. D. Ryder, D. R. Scott, R. M. Shannon, and N. Tejos, A census of baryons in the Universe from localized fast radio bursts, Nature 581(7809), 391 (2020)
CrossRef ADS Google scholar
[159]
J. X. Prochaska and Y. Zheng, Probing galactic haloes with fast radio bursts, Mon. Not. R. Astron. Soc. 485(1), 648 (2019)
CrossRef ADS Google scholar
[160]
J. Xu and J. L. Han, Extragalactic dispersion measures of fast radio bursts, Res. Astron. Astrophys. 15(10), 1629 (2015)
CrossRef ADS Google scholar
[161]
R. Luo, K. Lee, D. R. Lorimer, and B. Zhang, On the normalized FRB luminosity function, Mon. Not. R. Astron. Soc. 481(2), 2320 (2018)
CrossRef ADS Google scholar
[162]
A. M. Hopkins and J. F. Beacom, On the normalization of the cosmic star formation history, Astrophys. J. 651(1), 142 (2006)
CrossRef ADS Google scholar
[163]
L. X. Li, Star formation history up to z= 7.4: implications for gamma-ray bursts and cosmic metallicity evolution, Mon. Not. R. Astron. Soc. 388(4), 1487 (2008)
CrossRef ADS Google scholar
[164]
N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, et al, Planck 2018 results, Astron. Astrophys. 641, A6 (2020)
CrossRef ADS Google scholar
[165]
M. Fukugita, C. J. Hogan, and P. J. E. Peebles, The cosmic baryon budget, Astrophys. J. 503(2), 518 (1998)
CrossRef ADS Google scholar
[166]
R. B. Tully, H. Courtois, Y. Hoffman, and D. Pomarede, The Laniakea supercluster of galaxies, Nature 513(7516), 71 (2014)
CrossRef ADS Google scholar
[167]
O. Minazzoli, N. K. Johnson-McDaniel, and M. Sakellariadou, Shortcomings of Shapiro delay-based tests of the equivalence principle on cosmological scales, Phys. Rev. D 100(10), 104047 (2019)
CrossRef ADS Google scholar
[168]
Z. Y. Wang, R. Y. Liu, and X. Y. Wang, Testing the equivalence principle and lorentz invariance with PeV neutrinos from blazar flares, Phys. Rev. Lett. 116(15), 151101 (2016)
CrossRef ADS Google scholar
[169]
S. Boran, S. Desai, and E. O. Kahya, Constraints on differential Shapiro delay between neutrinos and photons from IceCube-170922A, Eur. Phys. J. C 79(3), 185 (2019)
CrossRef ADS Google scholar
[170]
R. Laha, Constraints on neutrino speed, weak equivalence principle violation, Lorentz invariance violation, and dual lensing from the first high-energy astrophysical neutrino source TXS 0506+ 056, Phys. Rev. D 100(10), 103002 (2019)
CrossRef ADS Google scholar
[171]
J. J. Wei, B. B. Zhang, L. Shao, H. Gao, Y. Li, Q. Q. Yin, X. F. Wu, X. Y. Wang, B. Zhang, and Z. G. Dai, Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar, J. High Energy Astrophys. 22, 1 (2019)
CrossRef ADS Google scholar
[172]
J. J. Wei, X. F. Wu, H. Gao, and P. Meszaros, Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gammaray bursts, J. Cosmol. Astropart. Phys. 08, 031 (2016)
CrossRef ADS Google scholar
[173]
X. Li, Y. M. Hu, Y. Z. Fan, and D. M. Wei, GRB/GW association: Long–short GRB candidates, time lag, measuring gravitational wave velocity, and testing einstein’s equivalence principle, Astrophys. J. 827(1), 75 (2016)
CrossRef ADS Google scholar
[174]
B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, et al, Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. 848(2), L13 (2017)
[175]
M. Liu, Z. Zhao, X. You, J. Lu, and L. Xu, Test of the weak equivalence principle using LIGO observations of GW150914 and Fermi observations of GBM transient 150914, Phys. Lett. B 770, 8 (2017)
CrossRef ADS Google scholar
[176]
H. Wang, F. W. Zhang, Y. Z. Wang, Z. Q. Shen, Y. F. Liang, X. Li, N. H. Liao, Z. P. Jin, Q. Yuan, Y. C. Zou, Y. Z. Fan, and D. M. Wei, The GW170817/GRB 170817A/AT 2017GFO Association: Some Implications for Physics and Astrophysics, Astrophys. J. 851(1), L18 (2017)
CrossRef ADS Google scholar
[177]
J. J. Wei, B. B. Zhang, X. F. Wu, H. Gao, P. Meszaros, B. Zhang, Z. G. Dai, S. N. Zhang, and Z. H. Zhu, Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, J. Cosmol. Astropart. Phys. 11, 035 (2017)
CrossRef ADS Google scholar
[178]
I. M. Shoemaker and K. Murase, Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A, Phys. Rev. D 97(8), 083013 (2018)
CrossRef ADS Google scholar
[179]
S. Boran, S. Desai, E. O. Kahya, and R. P. Woodard, GW170817 falsifies dark matter emulators, Phys. Rev. D 97(4), 041501 (2018)
CrossRef ADS Google scholar
[180]
L. Yao, Z. Zhao, Y. Han, J. Wang, T. Liu, and M. Liu, Testing the weak equivalence principle with the binary neutron star merger GW 170817: The gravitational contribution of the host galaxy, Astrophys. J. 900(1), 31 (2020)
CrossRef ADS Google scholar
[181]
C. Sivaram, Constraints on the photon mass and charge and test of equivalence principle from GRB 990123, Bull. Astron. Soc. India 27, 627 (1999)
[182]
Y. Sang, H. N. Lin, and Z. Chang, Testing Einstein’s equivalence principle with short gamma-ray bursts, Mon. Not. R. Astron. Soc. 460, 2282 (2016)
CrossRef ADS Google scholar
[183]
Z. X. Luo, B. Zhang, J. J. Wei, and X. F. Wu, Testing Einstein’s Equivalence Principle with supercluster Laniakea’s gravitational field, J. High Energy Astrophysics. 9, 35 (2016)
CrossRef ADS Google scholar
[184]
H. Yu, S. Q. Xi, and F. Y. Wang, A new method to test the Einstein’s weak equivalence principle, Astrophys. J. 860(2), 173 (2018)
CrossRef ADS Google scholar
[185]
S. J. Tingay and D. L. Kaplan, Limits on Einstein’s equivalence principle from the first localized fast radio burst FRB 150418, Astrophys. J. 820(2), L31 (2016)
CrossRef ADS Google scholar
[186]
A. Nusser, On testing the equivalence principle with extragalactic bursts, Astrophys. J. 821(1), L2 (2016)
CrossRef ADS Google scholar
[187]
D. Wang, Z. Li, and J. Zhang, Weak equivalence principle, swampland and H 0 tension with fast single radio bursts FRB 180924 and FRB 190523, Physics of the Dark Universe 29, 100571 (2020)
CrossRef ADS Google scholar
[188]
J. J. Wei, J. S. Wang, H. Gao, and X. F. Wu, Tests of the Einstein equivalence principle using TeV blazars, Astrophys. J. 818(1), L2 (2016)
CrossRef ADS Google scholar
[189]
Y. P. Yang and B. Zhang, Testing Einstein’s weak equivalence principle with a 0.4-nanosecond giant pulse of the Crab pulsar, Phys. Rev. D 94(10), 101501 (2016)
CrossRef ADS Google scholar
[190]
Y. Zhang and B. Gong, Test of weak equivalence principle with the multi-band timing of the Crab pulsar, Astrophys. J. 837(2), 134 (2017)
CrossRef ADS Google scholar
[191]
S. Desai and E. Kahya, Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation, Eur. Phys. J. C 78(2), 86 (2018)
CrossRef ADS Google scholar
[192]
C. Leung, B. Hu, S. Harris, A. Brown, J. Gallicchio, and H. Nguyen, Testing the weak equivalence principle using optical and near-infrared Crab pulses, Astrophys. J. 861(1), 66 (2018)
CrossRef ADS Google scholar
[193]
E. O. Kahya and S. Desai, Constraints on frequencydependent violations of Shapiro delay from GW150914, Phys. Lett. B 756, 265 (2016)
CrossRef ADS Google scholar
[194]
S. C. Yang, W. B. Han, and G. Wang, Tests of weak equivalence principle with the gravitational wave signals in the LIGO-Virgo catalogue GWTC-1, Mon. Not. R. Astron. Soc. 499(1), L53 (2020)
CrossRef ADS Google scholar
[195]
H. Yu and F. Y. Wang, Testing weak equivalence principle with strongly lensed cosmic transients, Eur. Phys. J. C 78(9), 692 (2018)
CrossRef ADS Google scholar
[196]
O. Minazzoli, Strong lensing in multimessenger astronomy as a test of the equivalence principle, arXiv: 1912.06891 (2019)
[197]
X. F. Wu, J. J. Wei, M. X. Lan, H. Gao, Z. G. Dai, and P. Meszaros, New test of weak equivalence principle using polarized light from astrophysical events, Phys. Rev. D 95(10), 103004 (2017)
CrossRef ADS Google scholar
[198]
J. J. Wei and X. F. Wu, Testing the weak equivalence principle and Lorentz invariance with multiwavelength polarization observations of GRB optical afterglows, Eur. Phys. J. Plus 135(6), 527 (2020)
CrossRef ADS Google scholar
[199]
S. X. Yi, Y. C. Zou, X. Yang, B. Liao, and S. W. Wei, Constraining the Einstein equivalence principle with multi-wavelength observations of polarized blazars, Mon. Not. R. Astron. Soc. 493(2), 1782 (2020)
CrossRef ADS Google scholar
[200]
S. X. Yi, Y. C. Zou, J. J. Wei, and Q. Q. Zhou, Constraining Einstein’s equivalence principle with multiwavelength polarized astrophysical sources, Mon. Not. R. Astron. Soc. 498(3), 4295 (2020)
CrossRef ADS Google scholar
[201]
H. Abdalla, R. Adam, F. Aharonian, F. Ait Benkhali, E. O. Angüner, et al, A very-high-energy component deep in the γ-ray burst afterglow, Nature 575(7783), 464 (2019)
[202]
B. Zhang, Extreme emission seen from γ-ray bursts, Nature 575(7783), 448 (2019)
CrossRef ADS Google scholar
[203]
M. L. McConnell, High energy polarimetry of prompt GRB emission, New Astron. Rev. 76, 1 (2017)
CrossRef ADS Google scholar
[204]
S. Gao and R. M. Wald, Theorems on gravitational time delay and related issues, Class. Quantum Grav. 17(24), 4999 (2000)
CrossRef ADS Google scholar
[205]
Y. Hoffman, D. Pomarede, R. B. Tully, and H. M. Courtois, The dipole repeller, Nat. Astron. 1, 0036 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1656 KB)

Accesses

Citations

Detail

Sections
Recommended

/