Thermally activated phase transitions in Fe-Ni core-shell nanoparticles

Jin-Bo Wang, Rao Huang, Yu-Hua Wen

PDF(9812 KB)
PDF(9812 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (6) : 63604. DOI: 10.1007/s11467-019-0932-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Thermally activated phase transitions in Fe-Ni core-shell nanoparticles

Author information +
History +

Abstract

Fe-Ni core-shell nanoparticles are versatile functional materials, and their thermal stabilities are crucial for their performances in operating conditions. In this study, the thermodynamic behaviors of Fe-Ni core-shell nanoparticles are examined under continuous heating. The solid–solid phase transition from body centered cubic (bcc) to face centered cubic (fcc) in the Fe core is identified. The transition is accompanied with the generation of stacking faults around the core-shell interface, which notably lowers the melting points of the Fe-Ni core-shell nanoparticles and causes even worse thermal stability compared with Ni ones. Moreover, the temperature of the structural transformation is shown to be tuned by modifying the Ni shell thickness. Finally, the stress distributions of the core and the shell are also explored. The relevant results could be helpful for the design, preparation, and utilization of Fe-based nanomaterials.

Keywords

core-shell / metallic / nanoparticle / phase transition / molecular dynamics

Cite this article

Download citation ▾
Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles. Front. Phys., 2019, 14(6): 63604 https://doi.org/10.1007/s11467-019-0932-1

References

[1]
V. Amendola, P. Riello, and M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents, J. Phys. Chem. C 115(12), 5140 (2011)
CrossRef ADS Google scholar
[2]
D. L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small 1(5), 482 (2005)
CrossRef ADS Google scholar
[3]
Z. Y. Zhou, N. Tian, J. T. Li, I. Broadwell, and S. G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev. 40(7), 4167 (2011)
CrossRef ADS Google scholar
[4]
Y. X. Chen, S. P. Chen, Z. Y. Zhou, N. Tian, Y. X. Jiang, S. G. Sun, Y. Ding, and Z. L. Wang, Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry, J. Am. Chem. Soc. 131(31), 10860 (2009)
CrossRef ADS Google scholar
[5]
L. M. Lacroix, N. F. Huls, D. Ho, X. L. Sun, K. Cheng, and S. H. Sun, Stable single-crystalline body centered cubic Fe nanoparticles, Nano Lett. 11(4), 1641 (2011)
CrossRef ADS Google scholar
[6]
A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26(18), 3995 (2005)
CrossRef ADS Google scholar
[7]
X. Zhao, W. Liu, Z. Q. Cai, B. Han, T. W. Qian, and D. Y. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation, Water Res. 100, 245 (2016)
CrossRef ADS Google scholar
[8]
T. Phenrat, D. Schoenfelder, T. L. Kirschling, R. D. Tilton, and G. V. Lowry, Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene, Environ. Sci. Pollut. Res. Int. 25(8), 7157 (2018)
CrossRef ADS Google scholar
[9]
A. P. Douvalis, R. Zboril, A. B. Bourlinos, J. Tucek, S. Spyridi, and T. Bakas, A facile synthetic route toward airstable magnetic nanoalloys with Fe–Ni/Fe–Co core and iron oxide shell, J. Nanopart. Res. 14(9), 1130 (2012)
CrossRef ADS Google scholar
[10]
S. F. Moustafa and W. M. Daoush, Synthesis of nanosized Fe-Ni powder by chemical process for magnetic applications, J. Mater. Process. Technol. 181(1–3), 59 (2007)
CrossRef ADS Google scholar
[11]
P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. González-Carreño, and C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D Appl. Phys. 36(13), R182 (2003)
CrossRef ADS Google scholar
[12]
S. K. Sanjay, A. K. Singh, K. Aranishi, and Q. Xu, Noblemetal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage, J. Am. Chem. Soc. 133(49), 19638 (2011)
CrossRef ADS Google scholar
[13]
S. A. Theofanidis, V. V. Galvita, H. Poelman, and G. B. Marin, Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe, ACS Catal. 5(5), 3028 (2015)
CrossRef ADS Google scholar
[14]
Y. H. Tee, L. Bachas, and D. Bhattacharyya, Degradation of trichloroethylene by iron-based bimetallic nanoparticles, J. Phys. Chem. C 113(22), 9454 (2009)
CrossRef ADS Google scholar
[15]
M. Rivero-Huguet and W. D. Marshall, Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles, J. Hazard. Mater. 169(1–3), 1081 (2009)
CrossRef ADS Google scholar
[16]
G. Bonny, R. C. Pasianot, and L. Malerba, Fe-Ni manybody potential for metallurgical applications, Model. Simul. Mater. Sci. Eng. 17(2), 025010 (2009)
CrossRef ADS Google scholar
[17]
K. Vörtler, N. Juslin, G. Bonny, L. Malerba, and K. Nordlund, The effect of prolonged irradiation on defect production and ordering in Fe-Cr and Fe-Ni alloys, J. Phys.: Condens. Matter 23(35), 355007 (2011)
CrossRef ADS Google scholar
[18]
N. Anento, A. Serra, and Y. Osetsky, Effect of nickel on point defects diffusion in Fe-Ni alloys, Acta Mater. 132, 367 (2017)
CrossRef ADS Google scholar
[19]
C. G. Zhang, K. Ma, N. Q. Zhao, and Z. H. Yuan, A core-shell strategy for improving alloy catalyst activity for continual growth of hollow carbon onions, Cryst. Growth Des. 18(12), 7470 (2018)
CrossRef ADS Google scholar
[20]
Y. Qi, T. Cagin, W. L. Johnson, and W. A. III Goddard, Melting and crystallization in Ni nanoclusters: The mesoscale regime, J. Chem. Phys. 115(1), 385 (2001)
CrossRef ADS Google scholar
[21]
R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Thermal stability of platinum nanowires: a comparison study between single-crystalline and twinned structures, J. Mater. Chem. 21(47), 18998 (2011)
CrossRef ADS Google scholar
[22]
Q. S. Mei and K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals, Prog. Mater. Sci. 52(8), 1175 (2007)
CrossRef ADS Google scholar
[23]
Y. Shibuta and T. Suzuki, Melting and nucleation of iron nanoparticles: A molecular dynamics study, Chem. Phys. Lett. 445(4–6), 265 (2007)
CrossRef ADS Google scholar
[24]
R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Structure and stability of platinum nanocrystals: From low-index to high-index facets, J. Mater. Chem. 21(31), 11578 (2011)
CrossRef ADS Google scholar
[25]
C. Kittel, Introduction to Solid State Physics, John Wiley & Sons Press, 1956
[26]
R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Pt-Pd bimetallic catalysts: Structural and thermal stabilities of core-shell and alloyed nanoparticles, J. Phys. Chem. C 116(15), 8664 (2012)
CrossRef ADS Google scholar
[27]
J. D. Honeycutt and H. C. Andersen, Molecular-dynamics study of melting and freezing of small Lennard–Jones clusters, J. Phys. Chem. 91(19), 4950 (1987)
CrossRef ADS Google scholar
[28]
L. Sandoval, H. M Urbassek, and P. Entel, The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe, New J. Phys. 11(10), 103027 (2009)
CrossRef ADS Google scholar
[29]
R. Huang, S. F. Shao, X. M. Zeng, and Y. H. Wen, Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: A perspective from molecular dynamics simulations, Sci. Rep. 4(1), 7051 (2015)
CrossRef ADS Google scholar
[30]
R. Huang, Y. H. Wen, Z. Z. Zhu, and S. G. Sun, Atomicscale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles, Phys. Chem. Chem. Phys. 18(14), 9847 (2016)
CrossRef ADS Google scholar
[31]
C. Mottet, G. Rossi, F. Baletto, and R. Ferrando, Single impurity effect on the melting of nanoclusters, Phys. Rev. Lett. 95(3), 035501 (2005)
CrossRef ADS Google scholar
[32]
D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, Structural defects in amorphous solids Statistical analysis of a computer model, Philos. Mag. A 44(4), 847 (1981)
CrossRef ADS Google scholar
[33]
Y. T. Cheng, and M. W. Verbrugge, The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles, J. Appl. Phys. 104(8), 083521 (2008)
CrossRef ADS Google scholar
[34]
V. I. Levitas and K. Samani, Size and mechanics effects in surface-induced melting of nanoparticles, Nat. Commun. 2(1), 284 (2011)
CrossRef ADS Google scholar
[35]
H. Hasegawa and D. G. Pettifor, Microscopic theory of the temperature-pressure phase diagram of iron, Phys. Rev. Lett. 50(2), 130 (1983)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(9812 KB)

Accesses

Citations

Detail

Sections
Recommended

/