Local electrical characterization of two-dimensional materials with functional atomic force microscopy

Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng

PDF(15049 KB)
PDF(15049 KB)
Front. Phys. ›› 2019, Vol. 14 ›› Issue (3) : 33401. DOI: 10.1007/s11467-018-0879-7
REVIEW ARTICLE
REVIEW ARTICLE

Local electrical characterization of two-dimensional materials with functional atomic force microscopy

Author information +
History +

Abstract

Research about two-dimensional (2D) materials is growing exponentially across various scientific and engineering disciplines due to the wealth of unusual physical phenomena that occur when charge transport is confined to a plane. The applications of 2D materials are highly affected by the electrical properties of these materials, including current distribution, surface potential, dielectric response, conductivity, permittivity, and piezoelectric response. Hence, it is very crucial to characterize these properties at the nanoscale. The Atomic Force Microscopy (AFM)-based techniques are powerful tools that can simultaneously characterize morphology and electrical properties of 2D materials with high spatial resolution, thus being more and more extensively used in this research field. Here, the principles of these AFM techniques are reviewed in detail. After that, their representative applications are further demonstrated in the local characterization of various 2D materials’ electrical properties.

Keywords

advanced AFM techniques / nanoscale characterization / electrical properties / 2D materials

Cite this article

Download citation ▾
Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy. Front. Phys., 2019, 14(3): 33401 https://doi.org/10.1007/s11467-018-0879-7

References

[1]
H. T. Yuan, H. T. Wang, and Y. Cui, Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling, Acc. Chem. Res. 48(1), 81 (2015)
CrossRef ADS Google scholar
[2]
K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
CrossRef ADS Google scholar
[3]
J. W. May, Platinum surface LEED rings, Surf. Sci. 17(1), 267 (1969)
CrossRef ADS Google scholar
[4]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[5]
I. Meric, N. Baklitskaya, P. Kim, and K. L. Shepard, RF performance of top-gated, zero-bandgap graphene fieldeffect transistors, 2008 International Electron Devices Meeting, San Francisco, CA, 2008, pp 1–4
CrossRef ADS Google scholar
[6]
I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Current saturation in zerobandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol. 3(11), 654 (2008)
CrossRef ADS Google scholar
[7]
M. I. Katsnelson, Graphene: Carbon in two dimensions, Mater. Today 10(1–2), 20 (2007)
CrossRef ADS Google scholar
[8]
A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
CrossRef ADS Google scholar
[9]
X. Xu, L. F. C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5(1), 3689 (2014)
CrossRef ADS Google scholar
[10]
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)
CrossRef ADS Google scholar
[11]
M. Han, B. Ozyilmaz, Y. Zhang, P. Jarillo-Herero, and P. Kim, Electronic transport measurements in graphene nanoribbons, Phys. Status Solidi B 244(11), 4134 (2007)
CrossRef ADS Google scholar
[12]
A. Sikora, M. Woszczyna, M. Friedemann, F. J. Ahlers, and M. Kalbac, AFM diagnostics of graphene-based quantum Hall devices, Micron 43(2–3), 479 (2012)
CrossRef ADS Google scholar
[13]
C. Zhu, D. Du and Y. Lin, Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review, 2D Mater. 2(3), 032004 (2015)
[14]
M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, A graphene field-effect device, IEEE Electr. Device L, 28(4), 282 (2007)
CrossRef ADS Google scholar
[15]
N. D. Lu, L. F. Wang, L. Li, and M. Liu, A review for compact model of graphene field-effect transistors, Chin. Phys. B 26(3), 036804 (2017)
CrossRef ADS Google scholar
[16]
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
CrossRef ADS Google scholar
[17]
Q. L. Bao and K. P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano 6(5), 3677 (2012)
CrossRef ADS Google scholar
[18]
F. Yavari and N. Koratkar, Graphene-based chemical sensors, J. Phys. Chem. Lett. 3(13), 1746 (2012)
CrossRef ADS Google scholar
[19]
J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano 3(2), 301 (2009)
CrossRef ADS Google scholar
[20]
M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, H. K. Kim, D. G. Kim, D. Y. Lee, S. Nam, and J. U. Park, High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures, Nano Lett. 13(6), 2814 (2013)
CrossRef ADS Google scholar
[21]
I. N. Kholmanov, S. H. Domingues, H. Chou, X. H. Wang, C. Tan, J. Y. Kim, H. F. Li, R. Piner, A. J. G. Zarbin, and R. S. Ruoff, Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes, ACS Nano 7(2), 1811 (2013)
CrossRef ADS Google scholar
[22]
X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, High efficiency graphene solar cells by chemical doping, Nano Lett. 12(6), 2745 (2012)
CrossRef ADS Google scholar
[23]
Z. Liu, J. Li, and F. Yan, Package-free flexible organic solar cells with graphene top electrodes, Adv. Mater. 25(31), 4296 (2013)
CrossRef ADS Google scholar
[24]
K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Twodimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
CrossRef ADS Google scholar
[25]
S. Z. Butler, S. M. Hollen, L. Y. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, J. X. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
CrossRef ADS Google scholar
[26]
Mas-Ballesté, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, 2D materials: To graphene and beyond, Nanoscale 3(1), 20 (2011)
CrossRef ADS Google scholar
[27]
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Fieldeffect tunneling transistor based on vertical graphene heterostructures, Science 335(6071), 947 (2012)
CrossRef ADS Google scholar
[28]
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. Castro Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, Electron tunneling through ultrathin boron nitride crystalline barriers, Nano Lett. 12(3), 1707 (2012)
CrossRef ADS Google scholar
[29]
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Boron nitride substrates for highquality graphene electronics, Nat. Nanotechnol. 5(10), 722 (2010)
CrossRef ADS Google scholar
[30]
R. A. Doganov, E. C. T. O’Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. C. Neto, and B. Özyilmaz, Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere, Nat. Commun. 6(1), 6647 (2015)
CrossRef ADS Google scholar
[31]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
CrossRef ADS Google scholar
[32]
A. Kumar, and P. K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. B 85(6), 186 (2012)
CrossRef ADS Google scholar
[33]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
CrossRef ADS Google scholar
[34]
A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)
CrossRef ADS Google scholar
[35]
S. V. Kalinin and D. A. Bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, Phys. Rev. B 65(12), 125408 (2002)
CrossRef ADS Google scholar
[36]
X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forro, J. Shan, and K. F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2, Nat. Nanotechnol. 10(9), 765 (2015)
CrossRef ADS Google scholar
[37]
X. Xi, Z. Wang, W. Zhao, J. H. Park, K. T. Law, H. Berger, L. Forró, J. Shan, and K. F. Mak, Ising pairing in superconducting NbSe2 atomic layers, Nat. Phys. 12(2), 139 (2016)
[38]
A. W. Tsen, B. Hunt, Y. D. Kim, Z. J. Yuan, S. Jia, R. J. Cava, J. Hone, P. Kim, C. R. Dean, and A. N. Pasupathy, Nature of the quantum metal in a two-dimensional crystalline superconductor, Nat. Phys. 12(3), 208 (2016)
[39]
S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials, Annu. Rev. Mater. Res. 45(1), 63 (2015)
CrossRef ADS Google scholar
[40]
J. Pu, Y. Yomogida, K. K. Liu, L. J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Lett. 12(8), 4013 (2012)
CrossRef ADS Google scholar
[41]
D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian and X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)
CrossRef ADS Google scholar
[42]
J. Deng, D. Deng, and X. Bao, Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective, Adv. Mater. 29(43), 1606967 (2017)
CrossRef ADS Google scholar
[43]
F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan, and B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Lett. 13(2), 668 (2013)
CrossRef ADS Google scholar
[44]
B. Cho, A. R. Kim, D. J. Kim, H. S. Chung, S. Y. Choi, J. D. Kwon, S. W. Park, Y. Kim, B. H. Lee, K. H. Lee, D. H. Kim, J. Nam, and M. G. Hahm, Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor, ACS Appl. Mater. Interfaces 8(30), 19635 (2016)
CrossRef ADS Google scholar
[45]
J. Seo, J. Jang, S. Park, C. Kim, B. Park, and J. Cheon, Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries, Adv. Mater. 20(22), 4269 (2008)
CrossRef ADS Google scholar
[46]
K. S. Chen, I. Balla, N. S. Luu, and M. C. Hersam, Emerging opportunities for two-dimensional materials in lithium-ion batteries, ACS Energy Lett. 2(9), 2026 (2017)
CrossRef ADS Google scholar
[47]
N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Photosensor device based on few-layered WS2 films, Adv. Funct. Mater. 23(44), 5511 (2013)
CrossRef ADS Google scholar
[48]
N. Perea-López, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terrones, L. Balicas and M. Terrones, CVDgrown monolayered MoS2 as an effective photosensor operating at low-voltage, 2D Mater. 1(1), 011004 (2014)
[49]
M. Amani, M. L. Chin, A. G. Birdwell, T. P. O’Regan, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou, and M. Dubey, Electrical performance of monolayer MoS2 fieldeffect transistors prepared by chemical vapor deposition, Appl. Phys. Lett. 102(19), 193107 (2013)
CrossRef ADS Google scholar
[50]
S. Ahmed and J. Yi, Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors, Nano-Micro Lett. 9(4), 50 (2017)
CrossRef ADS Google scholar
[51]
G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56(9), 930 (1986)
CrossRef ADS Google scholar
[52]
G. Binnig, C. Gerber, E. Stoll, T. R. Albrecht, and C. F. Quate, Atomic resolution with atomic force microscope, Europhys. Lett. 3(12), 1281 (1987)
CrossRef ADS Google scholar
[53]
Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100‐Å scale, J. Appl. Phys. 61(10), 4723 (1987)
CrossRef ADS Google scholar
[54]
M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, Kelvin probe force microscopy, Appl. Phys. Lett. 58(25), 2921 (1991)
CrossRef ADS Google scholar
[55]
F. Pérez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, and F. Sanz, Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy,J. Appl. Phys. 78(11), 6797 (1995)
CrossRef ADS Google scholar
[56]
R. García and R. Perez, Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47(6–8), 197 (2002)
CrossRef ADS Google scholar
[57]
H. Hölscher and U. D. Schwarz, Theory of amplitude modulation atomic force microscopy with and without Q-control, Int. J. Non-linear Mech. 42(4), 608 (2007)
CrossRef ADS Google scholar
[58]
Y. Sugawara, T. Uchihashi, M. Abe, and S. Morita, True atomic resolution imaging of surface structure and surface charge on the GaAs(110), Appl. Surf. Sci. 140(3–4), 371 (1999)
CrossRef ADS Google scholar
[59]
S. K. Jang, J. Youn, Y. J. Song, and S. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric, Sci. Rep. 6(1), 30449 (2016)
CrossRef ADS Google scholar
[60]
A. Belianinov, S. V. Kalinin, and S. Jesse, Complete information acquisition in dynamic force microscopy, Nat. Commun. 6(1), 6550 (2015)
CrossRef ADS Google scholar
[61]
H. Martinez, C. Auriel, D. Gonbeau, M. Loudet, and G. Pfister-Guillouzo, Studies of 1T TiS2 by STM, AFM and XPS: The mechanism of hydrolysis in air, Appl. Surf. Sci. 93(3), 231 (1996)
CrossRef ADS Google scholar
[62]
M. G. Ruppert, D. M. Harcombe, M. R. P. Ragazzon, S. O. R. Moheimani, and A. J. Fleming, A review of demodulation techniques for amplitude-modulation atomic force microscopy, Beilstein J. Nanotechnol. 8, 1407 (2017)
CrossRef ADS Google scholar
[63]
Z. Zheng, R. Xu, S. Ye, S. Hussain, W. Ji, P. Cheng, Y. Li, Y. Sugawara, and Z. Cheng, High harmonic exploring on different materials in dynamic atomic force microscopy, Sci. China Tech. Sci. 61(3), 446 (2018)
CrossRef ADS Google scholar
[64]
G. Benstetter, R. Biberger, and D. P. Liu, A review of advanced scanning probe microscope analysis of functional films and semiconductor devices, Thin Solid Films 517(17), 5100 (2009)
CrossRef ADS Google scholar
[65]
R. A. Oliver, Advances in AFM for the electrical characterization of semiconductors, Rep. Prog. Phys. 71(7), 076501 (2008)
CrossRef ADS Google scholar
[66]
A. Avila and B. Bhushan, Electrical measurement techniques in atomic force microscopy, Crit. Rev. Solid State Mater. Sci. 35(1), 38 (2010)
CrossRef ADS Google scholar
[67]
S. Liu and Y. Wang, A review of the application of atomic force microscopy (AFM) in food science and technology, Adv. Food Nutr. Res. 62, 201 (2011)
CrossRef ADS Google scholar
[68]
I. Pecorari, L. Puzzi, and O. Sbaizero, Atomic force microscopy and lamins: A review study towards future, combined investigations, Microsc. Res. Tech. 80(1), 97 (2017)
CrossRef ADS Google scholar
[69]
S. V. Kontomaris and A. Stylianou, Atomic force microscopy for university students: Applications in biomaterials, Eur. J. Phys. 38(3), 033003 (2017)
CrossRef ADS Google scholar
[70]
M. Li, D. Dang, L. Q. Liu, N. Xi, and Y. C. Wang, Atomic force microscopy in characterizing cell mechanics for biomedical applications: A review, IEEE. T. Nanobiosci. 16(6), 523 (2017)
CrossRef ADS Google scholar
[71]
F. Houzé, R. Meyer, O. Schneegans, and L. Boyer, Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes, Appl. Phys. Lett. 69(13), 1975 (1996)
CrossRef ADS Google scholar
[72]
J. E. Shaw, A. Perumal, D. D. C. Bradley, P. N. Stavrinou, and T. D. Anthopoulos, Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy, J. Appl. Phys. 119(19), 195501 (2016)
CrossRef ADS Google scholar
[73]
F. Giannazzo, G. Fisichella, A. Piazza, S. Di Franco, I. P. Oliveri, S. Agnello, and F. Roccaforte, Current injection from metal to MoS2 probed at nanoscale by conductive atomic force microscopy, Mater. Sci. Semicond. Process. 42, 174 (2016)
CrossRef ADS Google scholar
[74]
J. Yang, P. Gordiichuk, O. Zheliuk, J. Lu, A. Herrmann, and J. Ye, Role of defects in tuning the electronic properties of monolayer WS2 grown by chemical vapor deposition, Phys. Status Solidi RRL. 11(10), 1700302 (2017)
CrossRef ADS Google scholar
[75]
M. R. Rosenberger, H. J. Chuang, K. M. McCreary, C. H. Li, and B. T. Jonker, Electrical characterization of discrete defects and impact of defect density on photoluminescence in monolayer WS2, ACS Nano 12(2), 1793 (2018)
CrossRef ADS Google scholar
[76]
S. J. O’Shea, Conducting atomic force microscopy study of silicon dioxide breakdown, J. Vac. Sci. Technol. B 13(5), 1945 (1995)
CrossRef ADS Google scholar
[77]
L. Zhang and Y. Mitani, Structural and electrical evolution of gate dielectric breakdown observed by conductive atomic force microscopy, Appl. Phys. Lett. 88(3), 032906 (2006)
CrossRef ADS Google scholar
[78]
E. Koren, Y. Rosenwaks, J. E. Allen, E. R. Hemesath, and L. J. Lauhon, Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy, Appl. Phys. Lett. 95(9), 092105 (2009)
CrossRef ADS Google scholar
[79]
H. J. Lee and S. M. Park, Electrochemistry of conductive polymers. 30. Nanoscale measurements of doping distributions and current-voltage characteristics of electrochemically deposited polypyrrole films, J. Phys. Chem. B 108(5), 1590 (2004)
CrossRef ADS Google scholar
[80]
R. Vidyasagar, B. Camargo, K. Romanyuk, and A. L. Kholkin, Surface potential distribution of multilayer graphene using Kelvin probe and electric-field force microscopies, Ferroelectr. 508(1), 115 (2017)
CrossRef ADS Google scholar
[81]
A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
CrossRef ADS Google scholar
[82]
V. Kaushik, D. Varandani, and B. R. Mehta, Nanoscale mapping of layer-dependent surface potential and junction properties of cvd-grown MoS2 domains, J. Phys. Chem. C 119(34), 20136 (2015)
CrossRef ADS Google scholar
[83]
T. Filleter, K. V. Emtsev, T. Seyller, and R. Bennewitz, Local work function measurements of epitaxial graphene, Appl. Phys. Lett. 93(13), 133117 (2008)
CrossRef ADS Google scholar
[84]
Y. Shen, X. Zhang, Y. Wang, X. Zhou, J. Hu, S. Guo, and Y. Zhang, Charge transfer between reduced graphene oxide sheets on insulating substrates, Appl. Phys. Lett. 103(5), 053107 (2013)
CrossRef ADS Google scholar
[85]
A. Liscio, G. P. Veronese, E. Treossi, F. Suriano, F. Rossella, V. Bellani, R. Rizzoli, P. Samorì, and V. Palermo, Charge transport in graphene–polythiophene blends as studied by Kelvin probe force microscopy and transistor characterization, J. Mater. Chem. 21(9), 2924 (2011)
CrossRef ADS Google scholar
[86]
L. Yan, C. Punckt, I. A. Aksay, W. Mertin, and G. Bacher, Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy, Nano Lett. 11(9), 3543 (2011)
CrossRef ADS Google scholar
[87]
M. Lucchesi, G. Privitera, M. Labardi, D. Prevosto, S. Capaccioli, and P. Pingue, Electrostatic force microscopy and potentiometry of realistic nanostructured systems, J. Appl. Phys. 105(5), 054301 (2009)
CrossRef ADS Google scholar
[88]
S. S. Datta, D. R. Strachan, E. J. Mele, and A. T. C. Johnson, Surface potentials and layer charge distributions in few-layer graphene films, Nano Lett. 9(1), 7 (2009)
CrossRef ADS Google scholar
[89]
C. K. Oliveira, M. J. S. Matos, M. S. C. Mazzoni, H. Chacham, and B. R. A. Neves, Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: A confined water effect? Nanotechnol. 23(17), 175703 (2012)
CrossRef ADS Google scholar
[90]
L. Collins, J. I. Kilpatrick, S. A. L. Weber, A. Tselev, I. V. Vlassiouk, I. N. Ivanov, S. Jesse, S. V. Kalinin and B. J. Rodriguez, Open loop Kelvin probe force microscopy with single and multi-frequency excitation, Nanotechnol. 24(47), 475702 (2013)
CrossRef ADS Google scholar
[91]
C. Li, X. D. Ding, and G. C. Lin, Study on multifrequency method for electrostatic force microscopy in air, Integr. Ferroelectr. 145(1), 59 (2013)
CrossRef ADS Google scholar
[92]
Y. P. Jiang, Q. Qi, R. Wang, J. Zhang, Q. K. Xue, C. Wang, C. Jiang, and X. H. Qiu, Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate, ACS Nano 5(8), 6195 (2011)
CrossRef ADS Google scholar
[93]
C. Gao, T. Wei, F. Duewer, Y. Lu, and X. D. Xiang, High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope, Appl. Phys. Lett. 71(13), 1872 (1997)
CrossRef ADS Google scholar
[94]
D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes, Nano Lett. 15(12), 8136 (2015)
CrossRef ADS Google scholar
[95]
Y. Feng, K. Zhang, F. Wang, Z. Liu, M. Fang, R. Cao, Y. Miao, Z. Yang, W. Mi, Y. Han, Z. Song, and H. S. Wong, Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere, ACS Appl. Mater. Interfaces 7(40), 22587 (2015)
CrossRef ADS Google scholar
[96]
Y. Liu, C. Tan, H. Chou, A. Nayak, D. Wu, R. Ghosh, H. Y. Chang, Y. Hao, X. Wang, J. S. Kim, R. Piner, R. S. Ruoff, D. Akinwande, and K. Lai, Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates, Nano Lett. 15(8), 4979 (2015)
CrossRef ADS Google scholar
[97]
W. Kundhikanjana, K. Lai, H. Wang, H. Dai, M. A. Kelly, and Z. Shen, Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging, Nano Lett. 9(11), 3762 (2009)
CrossRef ADS Google scholar
[98]
S. Berweger, P. T. Blanchard, M. D. Brubaker, K. J. Coakley, N. A. Sanford, T. M. Wallis, K. A. Bertness, and P. Kabos, Near-field control and imaging of free charge carrier variations in GaN nanowires, Appl. Phys. Lett. 108(7), 073101 (2016)
CrossRef ADS Google scholar
[99]
E. Brinciotti, G. Gramse, S. Hommel, T. Schweinboeck, A. Altes, M. A. Fenner, J. Smoliner, M. Kasper, G. Badino, S. S. Tuca, and F. Kienberger, Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microwave microscopy, Nanoscale 7(35), 14715 (2015)
CrossRef ADS Google scholar
[100]
H. P. Huber, I. Humer, M. Hochleitner, M. Fenner, M. Moertelmaier, C. Rankl, A. Imtiaz, T. M. Wallis, H. Tanbakuchi, P. Hinterdorfer, P. Kabos, J. Smoliner, J. J. Kopanski, and F. Kienberger, Calibrated nanoscale dopant profiling using a scanning microwave microscope, J. Appl. Phys. 111(1), 014301 (2012)
CrossRef ADS Google scholar
[101]
S. K. Kim, R. Bhatia, T. H. Kim, D. Seol, J. H. Kim, H. Kim, W. Seung, Y. Kim, Y. H. Lee, and S. W. Kim, Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators, Nano Energy 22, 483 (2016)
CrossRef ADS Google scholar
[102]
M. Park, S. Hong, J. Kim, J. Hong, and K. No, Nanoscale ferroelectric switching behavior at charged domain boundaries studied by angle-resolved Piezoresponse force microscopy, Appl. Phys. Lett. 99(14), 142909 (2011)
CrossRef ADS Google scholar
[103]
S. Kim, V. Gopalan, and A. Gruverman, Coercive fields in ferroelectrics: A case study in lithium niobate and lithium tantalate, Appl. Phys. Lett. 80(15), 2740 (2002)
CrossRef ADS Google scholar
[104]
R. Xu, L. J. Yin, J. B. Qiao, K. K. Bai, J. C. Nie, and L. He, Direct probing of the stacking order and electronic spectrum of rhombohedral trilayer graphene with scanning tunneling microscopy, Phys. Rev. B 91(3), 035410 (2015)
CrossRef ADS Google scholar
[105]
C. J. Chen, Introduction to Scanning Tunneling Microscopy, Columbia University, 2008
[106]
M. P. Murrell, M. E. Welland, S. J. O’Shea, T. M. H. Wong, J. R. Barnes, A. W. McKinnon, M. Heyns, and S. Verhaverbeke, Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy, Appl. Phys. Lett. 62(7), 786 (1993)
CrossRef ADS Google scholar
[107]
A. A. Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, H. Morkoc, and R. Molnar, Current mapping of GaN films by conductive atomic force microscopy, Appl. Phys. Lett. 82(12), 1890 (2003)
CrossRef ADS Google scholar
[108]
W. Frammelsberger, G. Benstetter, J. Kiely, and R. Stamp, C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductivecoated probe tips, Appl. Surf. Sci. 253(7), 3615 (2007)
CrossRef ADS Google scholar
[109]
P. De Wolf, T. Clarysse, and W. Vandervorst, Quantification of nanospreading resistance profiling data, J. Vac. Sci. Technol. B 16(1), 320 (1998)
CrossRef ADS Google scholar
[110]
J. M. Mativetsky, Y. L. Loo, and P. Samorì, Elucidating the nanoscale origins of organic electronic function by conductive atomic force microscopy, J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3118 (2014)
CrossRef ADS Google scholar
[111]
H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, Resolution and contrast in Kelvin probe force microscopy,J. Appl. Phys. 84(3), 1168 (1998)
CrossRef ADS Google scholar
[112]
J. W. P. Hsu, H. M. Ng, A. M. Sergent, and S. N. G. Chu, Scanning Kelvin force microscopy imaging of surface potential variations near threading dislocations in GaN, Appl. Phys. Lett. 81(19), 3579 (2002)
CrossRef ADS Google scholar
[113]
J. Ren, H. D. Liess, R. Mackel, and H. Baumgartner, Scanning kelvin microscope: A new method for surface investigations, Fresenius J. Anal. Chem. 353(3–4), 303 (1995)
CrossRef ADS Google scholar
[114]
L. Collins, S. Jesse, N. Balke, B. J. Rodriguez, S. Kalinin, and Q. Li, Band excitation Kelvin probe force microscopy utilizing photothermal excitation, Appl. Phys. Lett. 106(10), 104102 (2015)
CrossRef ADS Google scholar
[115]
S. Guo, S. V. Kalinin, and S. Jesse, Open-loop band excitation Kelvin probe force microscopy, Nanotechnol. 23(12), 125704 (2012)
CrossRef ADS Google scholar
[116]
M. Neek-Amal, L. Covaci, K. Shakouri, and F. Peeters, Electronic structure of a hexagonal graphene flake subjected to triaxial stress, Phys. Rev. B 88(11), 115428 (2013)
CrossRef ADS Google scholar
[117]
P. De Wolf, R. Stephenson, T. Trenkler, T. Clarysse, T. Hantschel, and W. Vandervorst., Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy, J. Vac. Sci. Technol. B 18(1), 361 (2000)
CrossRef ADS Google scholar
[118]
W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Kelvin probe force microscopy and its application, Surf. Sci. Rep. 66(1), 1 (2011)
CrossRef ADS Google scholar
[119]
B. Bhushan and A. V. Goldade, Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244(1–2), 104 (2000)
CrossRef ADS Google scholar
[120]
L. Tetard, A. Passian, and T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling, Nat. Nanotechnol. 5(2), 105 (2010)
CrossRef ADS Google scholar
[121]
R. W. Stark, N. Naujoks, and A. Stemmer, Multifrequency electrostatic force microscopy in the repulsive regime, Nanotechnol. 18(6), 065502 (2007)
CrossRef ADS Google scholar
[122]
X. D. Ding, J. An, J. B. Xu, C. Li, and R. Y. Zeng, Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions, Appl. Phys. Lett. 94(22), 223109 (2009)
CrossRef ADS Google scholar
[123]
T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, Frequency modulation detection using high-Qcantilevers for enhanced force microscope sensitivity, J. Appl. Phys. 69(2), 668 (1991)
CrossRef ADS Google scholar
[124]
L. Fumagalli, M. A. Edwards, and G. Gomila, Quantitative electrostatic force microscopy with sharp silicon tips, Nanotechnol. 25(49), 495701 (2014)
CrossRef ADS Google scholar
[125]
S. Gómez-Mońivas, L. S. Froufe, R. Carminati, J. J. Greffet, and J. J. Saenz, Tip-shape effects on electrostatic force microscopy resolution, Nanotechnol. 12(4), 496 (2001)
CrossRef ADS Google scholar
[126]
C. Schönenberger and S. F. Alvarado, Observation of single charge carriers by force microscopy, Phys. Rev. Lett. 65(25), 3162 (1990)
CrossRef ADS Google scholar
[127]
C. Schönenberger, Charge flow during metal-insulator contact, Phys. Rev. B 45, 3861 (1992)
CrossRef ADS Google scholar
[128]
S. Gómez-Mońivas, L. S. Froufe-Pérez, A. J. Caamańo, and J. J. Sáenz, Electrostatic forces between sharp tips and metallic and dielectric samples, Appl. Phys. Lett. 79(24), 4048 (2001)
CrossRef ADS Google scholar
[129]
K. Zhang, N. Marzari, and Q. Zhang, Covalently functionalized metallic single-walled carbon nanotubes studied using electrostatic force microscopy and dielectric force microscopy, J. Phys. Chem. C 117(46), 24570 (2013)
CrossRef ADS Google scholar
[130]
S. C. Jr Fain, K. A. Barry, M. G. Bush, B. Pittenger, and R. N. Louie, Measuring average tip-sample forces in intermittent-contact (tapping) force microscopy in air, Appl. Phys. Lett. 76, 930 (2000)
CrossRef ADS Google scholar
[131]
C. Riedel, G. A. Schwartz, R. Arinero, P. Tordjeman, G. Leveque, A. Alegria, and J. Colmenero, Nanoscale dielectric properties of insulating thin films: From single point measurements to quantitative images, Ultramicroscopy 110(6), 634 (2010)
CrossRef ADS Google scholar
[132]
P. Girard, Electrostatic force microscopy: Principles and some applications to semiconductors, Nanotechnol. 12(4), 485 (2001)
CrossRef ADS Google scholar
[133]
C. Riedel, R. Arinero, P. Tordjeman, M. Ramonda, G. Lévêque, G. A. Schwartz, D. G. Oteyza, A. Alegria, and J. Colmenero, Determination of the nanoscale dielectric constant by means of a double pass method using electrostatic force microscopy, J. Appl. Phys. 106(2), 024315 (2009)
CrossRef ADS Google scholar
[134]
L. Collins, J. I. Kilpatrick, I. V. Vlassiouk, A. Tselev, S. A. L. Weber, S. Jesse, S. V. Kalinin, and B. J. Rodriguez, Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface, Appl. Phys. Lett. 104(13), 133103 (2014)
CrossRef ADS Google scholar
[135]
L. Lei, R. Xu, S. Ye, X. Wang, K. Xu, S. Hussain, Y. Li, Y. Sugawara, L. Xie, W. Ji, and Z. Cheng, Local characterization of mobile charge carriers by two electrical AFM modes: Multi-harmonic EFM versus sMIM, J. Phys. Commun. 2(2), 025013 (2018)
CrossRef ADS Google scholar
[136]
J. P. Colinge and C. A. Colinge, Physics of Semiconductor, University of California, 2005
[137]
B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Localized charge force microscopy, J. Vac. Sci. Technol. A 8(1), 374 (1990)
CrossRef ADS Google scholar
[138]
Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy, Appl. Phys. Lett. 52(13), 1103 (1988)
CrossRef ADS Google scholar
[139]
K. Lai, W. Kundhikanjana, M. Kelly, and Z. X. Shen, Modeling and characterization of a cantilever-based nearfield scanning microwave impedance microscope, Rev. Sci. Instrum. 79(6), 063703 (2008)
CrossRef ADS Google scholar
[140]
K. Lai, M. B. Ji, N. Leindecker, M. A. Kelly, and Z. X. Shen, Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes, Rev. Sci. Instrum. 78(6), 063702 (2007)
CrossRef ADS Google scholar
[141]
Y. Tsai, Z. Chu, Y. Han, C. P. Chuu, D. Wu, A. Johnson, F. Cheng, M. Y. Chou, D. A. Muller, X. Li, K. Lai, and C. K. Shih, Tailoring semiconductor lateral multijunctions for giant photoconductivity enhancement, Adv. Mater. 29(41), 1703680 (2017)
CrossRef ADS Google scholar
[142]
D. Wu, X. Li, L. Luan, X. Y. Wu, W. Li, M. N. Yogeesh, R. Ghosh, Z. D. Chu, D. Akinwande, Q. Niu, and K. Lai, Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors, Proc. Natl. Acad. Sci. USA 113(31), 8583 (2016)
CrossRef ADS Google scholar
[143]
X. Rui, Z. Zhiyue, J. Wei, and C. Zhihai, Advance scanning microwave microscopy, Prog. Phys. 35(6), 241 (2015)
[144]
K. Lai, W. Kundhikanjana, M. A. Kelly, and Z. X. Shen, Nanoscale microwave microscopy using shielded cantilever probes, Appl. Nanosci. 1(1), 13 (2011)
CrossRef ADS Google scholar
[145]
Y. Yang, K. Lai, Q. Tang, W. Kundhikanjana, M. A. Kelly, K. Zhang, Z. Shen, and X. Li, Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging, J. Micromech. Microeng. 22(11), 115040 (2012)
CrossRef ADS Google scholar
[146]
G. Agustí, S. Cobo, A. B. Gaspar, G. Molnár, N. O. Moussa, P. Á. Szilágyi, V. Pálfi, C. Vieu, M. C. Munoz, J. A. Real, and A. Bousseksou, Thermal and light-induced spin crossover phenomena in new 3D Hofmann-like microporous metalorganic frameworks produced as bulk materials and nanopatterned thin films, Chem. Mater. 20(21), 6721 (2008)
CrossRef ADS Google scholar
[147]
A. Tselev, N. V. Lavrik, I. Vlassiouk, D. P. Briggs, M. Rutgers, R. Proksch, and S. V. Kalinin, Near-field microwave scanning probe imaging of conductivity inhomogeneities in CVD graphene, Nanotechnol. 23(38), 385706 (2012)
CrossRef ADS Google scholar
[148]
H. Madan, M. Jerry, A. Pogrebnyakov, T. Mayer, and S. Datta, quantitative mapping of phase coexistence in Mott-Peierls insulator during electronic and thermally driven phase transition, ACS Nano 9(2), 2009 (2015)
CrossRef ADS Google scholar
[149]
G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer and F. Kienberger, Calibrated complex impedance and permittivity measurements with scanning microwave microscopy, Nanotechnol. 25(14), 145703 (2014)
CrossRef ADS Google scholar
[150]
T. Dargent, K. Haddadi, T. Lasri, N. Clement, D. Ducatteau, B. Legrand, H. Tanbakuchi, and D. Theron, An interferometric scanning microwave microscope and calibration method for sub-fF microwave measurements, Rev. Sci. Instrum. 84(12), 123705 (2013)
CrossRef ADS Google scholar
[151]
H. P. Huber, M. Moertelmaier, T. M. Wallis, C. J. Chiang, M. Hochleitner, A. Imtiaz, Y. J. Oh, K. Schilcher, M. Dieudonne, J. Smoliner, P. Hinterdorfer, S. J. Rosner, H. Tanbakuchi, P. Kabos, and F. Kienberger, Calibrated nanoscale capacitance measurements using a scanning microwave microscope, Rev. Sci. Instrum. 81(11), 113701 (2010)
CrossRef ADS Google scholar
[152]
S. Dunn, Determination of cross sectional variation of ferroelectric properties for thin film (Ca. 500 nm) PZT (30/70) via PFM, Integr. Ferroelectr. 59(1), 1505 (2003)
CrossRef ADS Google scholar
[153]
M. S. Ivanov, N. E. Sherstyuk, E. D. Mishina, V. A. Khomchenko, A. Tselev, V. M. Mukhortov, J. A. Paixão, and A. L. Kholkin, Enhancement of local piezoelectric properties of a perforated ferroelectric thin film visualized via piezoresponse force microscopy, J. Phys. D 50(42), 425303 (2017)
CrossRef ADS Google scholar
[154]
S. Dunn, C. P. Shaw, Z. Huang, and R. W. Whatmore, Ultrahigh resolution of lead zirconate titanate 30/70 domains as imaged by piezoforce microscopy, Nanotechnol. 13(4), 456 (2002)
CrossRef ADS Google scholar
[155]
P. Güthner, and K. Dransfeld, Local poling of ferroelectric polymers by scanning force microscopy, Appl. Phys. Lett. 61(9), 1137 (1992)
CrossRef ADS Google scholar
[156]
Z. Jiang, G. Zheng, K. Zhan, Z. Han, and H. Wang, Mechanisms of polarization switching in graphene oxides and poly (vinylidene fluoride)–graphene oxide films, Jpn. J. Appl. Phys. 55(4S), 04EP04 (2016)
CrossRef ADS Google scholar
[157]
D. Seol, B. Kim, and Y. Kim, Non-piezoelectric effects in piezoresponse force microscopy, Curr. Appl. Phys. 17(5), 661 (2017)
CrossRef ADS Google scholar
[158]
F. Li, J. Qi, M. Xu, J. Xiao, Y. Xu, X. Zhang, S. Liu, and Y. Zhang, Layer dependence and light tuning surface potential of 2D MoS2 on various substrates, Small 13(14), 1603103 (2017)
CrossRef ADS Google scholar
[159]
E. Soergel, Piezoresponse force microscopy (PFM), J. Phys. D 44(46), 464003 (2011)
CrossRef ADS Google scholar
[160]
N. A. Burnham, X. Chen, C. S. Hodges, G. A. Matei, E. J. Thoreson, C. J. Roberts, M. C. Davies, and S. J. B. Tendler, Comparison of calibration methods for atomicforce microscopy cantilevers, Nanotechnol. 14(1), 1 (2003)
CrossRef ADS Google scholar
[161]
S. Hong, H. Shin, J. Woo, and K. No, Effect of cantilever–sample interaction on piezoelectric force microscopy, Appl. Phys. Lett. 80(8), 1453 (2002)
CrossRef ADS Google scholar
[162]
J. A. Christman, R. R. Jr Woolcott, A. I. Kingon, and R. J. Nemanich, Piezoelectric measurements with atomic force microscopy, Appl. Phys. Lett. 73(26), 3851 (1998)
CrossRef ADS Google scholar
[163]
C. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. Lu, and E. T. Yu, Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by Piezoresponse force microscopy, Nano Lett. 17(9), 5464 (2017)
CrossRef ADS Google scholar
[164]
S. V. Kalinin and D. A. Bonnell, Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63(12), 125411 (2001)
CrossRef ADS Google scholar
[165]
S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, Ferroelectric Lithography of Multicomponent Nanostructures, Adv. Mater. 16(910), 795 (2004)
CrossRef ADS Google scholar
[166]
K. Franke, H. Huelz, and M. Weihnacht, How to extract spontaneous polarization information from experimental data in electric force microscopy, Surf. Sci. 415(1–2), 178 (1998)
CrossRef ADS Google scholar
[167]
I. Szafraniak, C. Harnagea, R. Scholz, S. Bhattacharyya, D. Hesse, and M. Alexe, Ferroelectric epitaxial nanocrystals obtained by a self-patterning method, Appl. Phys. Lett. 83(11), 2211 (2003)
CrossRef ADS Google scholar
[168]
J. M. Mativetsky, E. Treossi, E. Orgiu, M. Melucci, G. P. Veronese, P. Samori, and V. Palermo, local current mapping and patterning of reduced graphene oxide, J. Am. Chem. Soc. 132(40), 14130 (2010)
CrossRef ADS Google scholar
[169]
G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride, Appl. Phys. Lett. 99(24), 243114 (2011)
CrossRef ADS Google scholar
[170]
L. Jiang, Y. Shi, F. Hui, K. Tang, Q. Wu, C. Pan, X. Jing, H. Uppal, F. Palumbo, G. Lu, T. Wu, H. Wang, M. A. Villena, X. Xie, P. C. McIntyre, and M. Lanza, Dielectric breakdown in chemical vapor deposited hexagonal boron nitride, ACS Appl. Mater. Interfaces 9(45), 39758 (2017)
CrossRef ADS Google scholar
[171]
Y. Hattori, T. Taniguchi, K. Watanabe, and K. Nagashio, Layer-by-layer dielectric breakdown of hexagonal boron nitride, ACS Nano 9(1), 916 (2015)
CrossRef ADS Google scholar
[172]
Y. Kobayashi, S. Yoshida, R. Sakurada, K. Takashima, T. Yamamoto, T. Saito, S. Konabe, T. Taniguchi, K. Watanabe, Y. Maniwa, O. Takeuchi, H. Shigekawa, and Y. Miyata, Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction, Sci. Rep. 6(1), 31223 (2016)
CrossRef ADS Google scholar
[173]
H. Lee, N. Son, H. Y. Jeong, T. G. Kim, G. S. Bang, J. Y. Kim, G. W. Shim, K. C. Goddeti, J. H. Kim, N. Kim, H. J. Shin, W. Kim, S. Kim, S. Y. Choi, and J. Y. Park, Friction and conductance imaging of sp2- and sp3-hybridized subdomains on single-layer graphene oxide, Nanoscale 8, 4063 (2016)
CrossRef ADS Google scholar
[174]
D. Ruzmetov, K. H. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O’Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, and T. G. Ivanov, Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride, ACS Nano 10(3), 3580 (2016)
CrossRef ADS Google scholar
[175]
C. S. Pathak, M. Garg, J. P. Singh, and R. Singh, Current transport properties of monolayer graphene/n-Si Schottky diodes, Semicond. Sci. Technol. 33(5), 055006 (2018)
CrossRef ADS Google scholar
[176]
J. Choi, H. Y. Zhang, H. D. Du, and J. H. Choi, understanding solvent effects on the properties of twodimensional transition metal dichalcogenides, ACS Appl. Mater. Interfaces 8(14), 8864 (2016)
CrossRef ADS Google scholar
[177]
S. Choi, Z. Shaolin, and W. Yang, Layer-numberdependent work function of MoS2 nanoflakes, J. Korean Phys. Soc. 64(10), 1550 (2014)
CrossRef ADS Google scholar
[178]
K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, and J. B. Xu, Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy, ACS Nano 9(10), 9868 (2015)
CrossRef ADS Google scholar
[179]
F. C. Salomão, E. M. Lanzoni, C. A. Costa, C. Deneke, and E. B. Barros, Determination of high-frequency dielectric constant and surface potential of graphene oxide and influence of humidity by Kelvin probe force microscopy, Langmuir 31(41), 11339 (2015)
CrossRef ADS Google scholar
[180]
O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B. K. Bussmann, J. Maultzsch, and M. Schleberger, Effect of contaminations and surface preparation on the work function of single layer MoS2, Beilstein J. Nanotechnol. 5, 291 (2015)
CrossRef ADS Google scholar
[181]
Y. Li, C. Y. Xu, J. Y. Wang, and L. Zhen, Photodiodelike behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures, Sci. Rep. 4(1), 7186 (2014)
CrossRef ADS Google scholar
[182]
C. B. Jacobs, K. Wang, A. V. Ievlev, L. Collins, E. S. Muckley, and I. N. Ivanov, Functional two/threedimensional assembly of monolayer WS2 and nickel oxide, J. Photonics Energy 7(1), 014001 (2017)
CrossRef ADS Google scholar
[183]
B. J. Robinson, C. E. Giusca, Y. T. Gonzalez, N. D. Kay, O. Kazakova and O. V. Kolosov, Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate, 2D Mater. 2(1), 015005 (2015)
[184]
H. F. Wen, Y. J. Li, E. Arima, Y. Naitoh, Y. Sugawara, R. Xu, and Z. H. Cheng, Investigation of tunneling current and local contact potential difference on the TiO2 (110) surface by AFM/KPFM at 78 K, Nanotechnol. 28(10), 105704 (2017)
CrossRef ADS Google scholar
[185]
K. Chen, X. Wan, W. Xie, J. Wen, Z. Kang, X. Zeng, H. Chen, and J. Xu, Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy, Adv. Mater. 27(41), 6431 (2015)
CrossRef ADS Google scholar
[186]
Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Tuning the graphene work function by electric field effect, Nano Lett. 9(10), 3430 (2009)
CrossRef ADS Google scholar
[187]
F. Long, R. Yasaei, R. Sanoj, W. T. Yao, P. Kral, A. Salehi-Khojin, and R. Shahbazian-Yassar, Characteristic work function variations of graphene line defects, ACS Appl. Mater. Interfaces 8(28), 18360 (2016)
CrossRef ADS Google scholar
[188]
C. Zheng, Q. Zhang, B. Weber, H. Ilatikhameneh, F. Chen, H. Sahasrabudhe, R. Rahman, S. Li, Z. Chen, J. Hellerstedt, Y. Zhang, W. H. Duan, Q. Bao, and M. S. Fuhrer, Direct observation of 2D electrostatics and ohmic contacts in template-grown graphene/WS2 heterostructures, ACS Nano 11(3), 2785 (2017)
CrossRef ADS Google scholar
[189]
M. Precner, T. Polakovic, Q. Qiao, D. J. Trainer, A. V. Putilov, C. Di Giorgio, I. Cone, Y. Zhu, X. X. Xi, M. Iavarone, and G. Karapetrov, Evolution of metastable defects and its effect on the electronic properties of MoS2 films, Sci. Rep. 8(1), 6724 (2018)
CrossRef ADS Google scholar
[190]
J. Shim, A. Oh, D. H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J. H. Park, High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment, Adv. Mater. 28(32), 6985 (2016)
CrossRef ADS Google scholar
[191]
R. Wang, S. N. Wang, D. D. Zhang, Z. J. Li, Y. Fang, and X. H. Qiu, Control of carrier type and density in exfoliated graphene by interface engineering, ACS Nano 5(1), 408 (2011)
CrossRef ADS Google scholar
[192]
V. Panchal, R. Pearce, R. Yakimova, A. Tzalenchuk, and O. Kazakova, Standardization of surface potential measurements of graphene domains, Sci. Rep. 3(1), 2597 (2013)
CrossRef ADS Google scholar
[193]
J. Li, X. Qi, G. Hao, K. Huang, and J. Zhong, Surface Potential of Graphene Oxide Investigated by Kelvin probe force microscopy, Fuller. Nanotub. Carbon Nanostruct. 23(9), 777 (2015)
CrossRef ADS Google scholar
[194]
G. Hao, Z. Huang, Y. Liu, X. Qi, L. Ren, X. Peng, L. Yang, X. Wei, and J. Zhong, Electrostatic properties of few-layer MoS2 films, AIP Adv. 3(4), 042125 (2013)
CrossRef ADS Google scholar
[195]
X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang, J. Du, F. Li, S. Zhang, J. Xiao, B. Liu, Y. Ou, X. Liu, L. Gu, and Y. Zhang, Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode, Nat. Commun. 8, 15881 (2017)
CrossRef ADS Google scholar
[196]
C. Zheng, Z. Q. Xu, Q. Zhang, M. T. Edmonds, K. Watanabe, T. Taniguchi, Q. Bao, and M. S. Fuhrer, profound effect of substrate hydroxylation and hydration on electronic and optical properties of monolayer MoS2, Nano Lett. 15(5), 3096 (2015)
CrossRef ADS Google scholar
[197]
T. H. Ly, H. Kim, Q. H. Thi, S. P. Lau, and J. Zhao, Superior dielectric screening in two-dimensional MoS2 spirals, ACS Appl. Mater. Interfaces 9(43), 37941 (2017)
CrossRef ADS Google scholar
[198]
K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H. J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai, Interlayer transition and infrared photodetection in atomically thin type-II MoTe2 /MoS2 van der Waals heterostructures, ACS Nano 10(3), 3852 (2016)
CrossRef ADS Google scholar
[199]
A. Verdaguer, M. Cardellach, J. J. Segura, G. M. Sacha, J. Moser, M. Zdrojek, A. Bachtold, and J. Fraxedas, Charging and discharging of graphene in ambient conditions studied with scanning probe microscopy, Appl. Phys. Lett. 94(23), 233105 (2009)
CrossRef ADS Google scholar
[200]
Y. S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu, Z. H. Lin, Y. Liu, and Z. L. Wang, Manipulating nanoscale contact electrification by an applied electric field, Nano Lett. 14(3), 1567 (2014)
CrossRef ADS Google scholar
[201]
S. Kim, T. Y. Kim, K. H. Lee, T. H. Kim, F. A. Cimini, S. K. Kim, R. Hinchet, S. W. Kim, and C. Falconi, Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics, Nat. Commun. 8, 15891 (2017)
CrossRef ADS Google scholar
[202]
T. Burnett, R. Yakimova, and O. Kazakova, Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy, Nano Lett. 11(6), 2324 (2011)
CrossRef ADS Google scholar
[203]
V. K. Sangwan, D. Jariwala, I. S. Kim, K. S. Chen, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2, Nat. Nanotechnol. 10(5), 403 (2015)
CrossRef ADS Google scholar
[204]
S. Luo, G. Hao, Y. Fan, L. Kou, C. He, X. Qi, C. Tang, J. Li, K. Huang, and J. Zhong, Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties, Nanotechnol. 26(10), 105705 (2015)
CrossRef ADS Google scholar
[205]
G. Hao, L. Kou, D. Lu, J. Peng, J. Li, C. Tang, and J. Zhong, Electrostatic properties of two-dimensional WSe2 nanostructures, J. Appl. Phys. 119(3), 035301 (2016)
CrossRef ADS Google scholar
[206]
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555 (2010)
CrossRef ADS Google scholar
[207]
S. E. Yalcin, C. Galande, R. Kappera, H. Yamaguchi, U. Martinez, K. A. Velizhanin, S. K. Doorn, A. M. Dattelbaum, M. Chhowalla, P. M. Ajayan, G. Gupta, and A. D. Mohite, Direct imaging of charge transport in progressively reduced graphene oxide using electrostatic force microscopy, ACS Nano 9(3), 2981 (2015)
CrossRef ADS Google scholar
[208]
G. L. Hao, X. Qi, J. Li, L. W. Yang, J. J. Yin, F. Lu, and J. X. Zhong, Surface potentials of few-layer graphene films in high vacuum and ambient conditions, Solid State Commun. 151(11), 818 (2011)
CrossRef ADS Google scholar
[209]
O. Kazakova, V. Panchal, and T. Burnett, Epitaxial graphene and graphene–based devices studied by electrical scanning probe microscopy, Crystals 3(1), 191 (2013)
CrossRef ADS Google scholar
[210]
S. H. Zhao, Y. Lv, and X. J. Yang, Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy, Nanoscale Res. Lett. 6(1), 498 (2011)
CrossRef ADS Google scholar
[211]
H. Jeong, K. M. Lee, Y. H. Ahn, S. Lee, and J. Y. Park, Non-contact local conductance mapping of individual graphene oxide sheets during the reduction process, J. Phys. Chem. Lett. 6(13), 2629 (2015)
CrossRef ADS Google scholar
[212]
S. Hao, B. Yang, J. Yuan, and Y. Gao, Substrate induced anomalous electrostatic and photoluminescence properties of monolayer MoS2 edges, Solid State Commun. 249, 1 (2017)
CrossRef ADS Google scholar
[213]
L. Jiang, B. Wu, H. Liu, Y. Huang, J. Chen, D. Geng, H. Gao, and Y. Liu, A general approach for fast detection of charge carrier type and conductivity difference in nanoscale materials, Adv. Mater. 25(48), 7015 (2013)
CrossRef ADS Google scholar
[214]
C. Tan, Y. Liu, H. Chou, J. S. Kim, D. Wu, D. Akinwande, and K. Lai, Laser-assisted oxidation of multi-layer tungsten diselenide nanosheets, Appl. Phys. Lett. 108(8), 083112 (2016)
CrossRef ADS Google scholar
[215]
Y. Liu, R. Ghosh, D. Wu, A. Ismach, R. Ruoff, and K. Lai, Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique, Nano Lett. 14(8), 4682 (2014)
CrossRef ADS Google scholar
[216]
P. J. d. Visser, R. Chua, J. O. Island, M. Finkel, A. J. Katan, H. Thierschmann, H. S. J. v. d. Zant and T. M. Klapwijk, Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy, 2D Mater. 3(2), 021002 (2016)
[217]
J. S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, Toward airstable multilayer phosphorene thin-films and transistors, Sci. Rep. 5(1), 8989 (2015)
CrossRef ADS Google scholar
[218]
V. V. Talanov, C. D. Barga, L. Wickey, I. Kalichava, E. Gonzales, E. A. Shaner, A. V. Gin, and N. G. Kalugin, Few-layer graphene characterization by near-field scanning microwave microscopy, ACS Nano 4, 3831 (2010)
CrossRef ADS Google scholar
[219]
C. J. Brennan, R. Ghosh, K. Koul, S. K. Banerjee, N. S. Lu, and E. T. Yu, Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by Piezoresponse force microscopy, Nano Lett. 17(9), 5464 (2017)
CrossRef ADS Google scholar
[220]
Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, Out-of-plane piezoelectricity and ferroelectricity in layered a-In2Se3 nanoflakes,Nano Lett. 17(9), 5508 (2017)
CrossRef ADS Google scholar
[221]
M. J. Loiacono, E. L. Granstrom, and C. D. Frisbie, Investigation of charge transport in thin, doped sexithiophene crystals by conducting probe atomic force microscopy, J. Phys. Chem. B 102(10), 1679 (1998)
CrossRef ADS Google scholar
[222]
J. Nozaki, S. Mori, Y. Miyata, Y. Maniwa, and K. Yanagi, Local optical absorption spectra of MoS2 monolayers obtained using scanning near-field optical microscopy measurements, Jpn. J. Appl. Phys. 55(3), 038003 (2016)
CrossRef ADS Google scholar
[223]
J. Nozaki, Y. Kobayashi, Y. Miyata, Y. Maniwa, K. Watanabe, T. Taniguchi, and K. Yanagi, Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy, Jpn. J. Appl. Phys. 55(6S1), 06GB01 (2016)

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(15049 KB)

Accesses

Citations

Detail

Sections
Recommended

/