Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS

Junran Zhang, Ming Gao, Jinglei Zhang, Xuefeng Wang, Xiaoqian Zhang, Minhao Zhang, Wei Niu, Rong Zhang, Yongbing Xu

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 137201.

PDF(9047 KB)
PDF(9047 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 137201. DOI: 10.1007/s11467-017-0705-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS

Author information +
History +

Abstract

Topological nodal-line semimetal is a new emerging material, which is viewed as a three-dimensional (3D) analog of graphene with the conduction and valence bands crossing at Dirac nodes, resulting in a range of exotic transport properties. Herein, we report on the direct quantum transport evidence of the 3D topological nodal-line semimetal phase of ZrSiS with angular-dependent magnetoresistance (MR) and the combined de Hass-van Alphen (dHvA) and Shubnikov-de Hass (SdH) oscillations. Through fitting by a two-band model, the MR results demonstrate high topological nodal-line fermion densities of approximately 6×1021 cm−3 and a perfect electron/hole compensation ratio of 0.94, which is consistent with the semi-classical expression fitting of Hall conductance Gxy and the theoretical calculation. Both the SdH and dHvA oscillations provide clear evidence of 3D topological nodal-line semimetal characteristic.

Keywords

nodal-line semimetals / high-density fermion / dHvA oscillations / SdH oscillations

Cite this article

Download citation ▾
Junran Zhang, Ming Gao, Jinglei Zhang, Xuefeng Wang, Xiaoqian Zhang, Minhao Zhang, Wei Niu, Rong Zhang, Yongbing Xu. Transport evidence of 3D topological nodal-line semimetal phase in ZrSiS. Front. Phys., 2018, 13(1): 137201 https://doi.org/10.1007/s11467-017-0705-7

References

[1]
G.Bian,T. R.Chang, R.Sankar, S. Y.Xu, H.Zheng, T.Neupert, C. K.Chiu, S. M.Huang, G.Chang,I.Belopolski, D. S.Sanchez, M.Neupane, N.Alidoust, C.Liu, B.Wang, C. C.Lee, H. T.Jeng, C.Zhang, Z.Yuan, S.Jia, A.Bansil, F.Chou, H.Lin, and M. Z.Hasan, Topological nodal-line fermions in spin-orbit metal PbTaSe2, Nat. Commun. 7, 10556 (2016)
CrossRef ADS Google scholar
[2]
Y.Wu, L. L.Wang, E.Mun, D.Johnson, D.Mou, L.Huang, Y.Lee, S.Bud’ko, P.Canfield, and A.Kaminski, Dirac node arcs in PtSn4, Nat. Phys. 12(7), 667(2016)
[3]
L. M.Schoop, M. N.Ali, C.Strasser, A.Topp,A.Varykhalov, D.Marchenko, V.Duppel, S. S.Parkin, B. V.Lotsch, and C. R.Ast, Dirac cone protected by nonsymmorphic symmetry and three-dimensional Dirac line node in ZrSiS, Nat. Commun. 7, 11696(2016)
CrossRef ADS Google scholar
[4]
M. N.Ali, J.Xiong, S.Flynn,J.Tao, Q. D.Gibson, L. M.Schoop, T.Liang, N.Haldolaarachchige, M.Hirschberger, N. P.Ong, and R. J.Cava, Large, nonsaturating magnetoresistance in WTe2, Nature514, 205(2014)
[5]
M.Neupane, S. Y.Xu, R.Sankar, N.Alidoust, G.Bian, C.Liu, I.Belopolski, T. R.Chang, H. T.Jeng, H.Lin, A.Bansil, F.Chou, and M. Z.Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2, Nat. Commun. 5, 3786(2014)
CrossRef ADS Google scholar
[6]
T.Liang, Q.Gibson, M. N.Ali, M.Liu, R. J.Cava, and N. P.Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280(2014)
CrossRef ADS Google scholar
[7]
C.Shekhar, A. K.Nayak, Y.Sun, M.Schmidt, M.Nicklas, I.Leermakers, U.Zeitler, Y.Skourski, J.Wosnitza, Z.Liu, Y.Chen, W.Schnelle, H.Borrmann, Y.Grin, C.Felser, and B.Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys. 11(8), 645(2015)
[8]
J.Hu, Z.Tang, J.Liu, Y.Zhu, J.Wei, andZ.Mao, Evidence of Dirac cones with 3D character probed by dHvA oscillations in nodal-line semimetal ZrSiS, arXiv: 1604.01567 (2016)
[9]
R.Singha, A.Pariari, B.Satpati, and P.Mandal, Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS, Proc. Natl. Acad. Sci. USA114(10), 2468(2017)
CrossRef ADS Google scholar
[10]
A.Narayanan, M.Watson, S.Blake, N.Bruyant, L.Drigo, Y.Chen, D.Prabhakaran, B.Yan, C.Felser, T.Kong, P. C.Canfield, and A. I.Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201(2015)
CrossRef ADS Google scholar
[11]
H.Li, H.He, H. Z.Lu, H.Zhang, H.Liu, R.Ma, Z.Fan, S. Q.Shen, and J.Wang, Negative magnetoresistance in Dirac semimetal Cd3As2, Nat. Commun. 7, 10301(2016)
CrossRef ADS Google scholar
[12]
Z. K.Liu, B.Zhou, Y.Zhang, Z. J.Wang, H. M.Weng, D.Prabhakaran, S. K.Mo, Z. X.Shen, Z.Fang, X.Dai, Z.Hussain, and Y. L.Chen, Discovery of a threedimensional topological Dirac semimetal Na3Bi, Science343(6173), 864(2014)
CrossRef ADS Google scholar
[13]
S. Y.Xu, I.Belopolski, N.Alidoust, M.Neupane, G.Bian, C.Zhang, R.Sankar, G.Chang,Z.Yuan, C. C.Lee, S. M.Huang, H.Zheng, J.Ma, D. S.Sanchez, B.Wang, A.Bansil, F.Chou, P. P.Shibayev, H.Lin, S.Jia, and M. Z.Hasan, Topological matter: Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science349(6248), 613(2015)
CrossRef ADS Google scholar
[14]
D.Wu, J.Liao, W.Yi, X.Wang,P.Li, H.Weng, Y.Shi, Y.Li, J.Luo, X.Dai, and Z.Fang, Giant semiclassical magnetoresistance in high mobility TaAs2 semimetal, Appl. Phys. Lett. 108(4), 042105(2016)
CrossRef ADS Google scholar
[15]
X. C.Pan, X.Chen, H.Liu, Y.Feng, Z.Wei, Y.Zhou, Z.Chi, L.Pi, F.Yen, F.Song, X.Wan, Z.Yang, B.Wang, G.Wang, and Y.Zhang,Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride, Nat. Commun. 6, 7805(2015)
CrossRef ADS Google scholar
[16]
A. A.Soluyanov, D.Gresch, Z.Wang, Q.Wu, M.Troyer, X.Dai, and B. A.Bernevig, Type-II Weyl semimetals, Nature527(7579), 495(2015)
CrossRef ADS Google scholar
[17]
Y.Zhao, H.Liu, J.Yan, W.An, J.Liu, X.Zhang, H.Wang, Y.Liu, H.Jiang, Q.Li, Y.Wang, X.Z.Li, D.Mandrus, X. C.Xie, M.Pan, and J.Wang, Anisotropic magnetotransport and exotic longitudinal linear magnetoresistance in WTe2 crystals, Phys. Rev. B92(4), 041104(2015)
CrossRef ADS Google scholar
[18]
M.Neupane, I.Belopolski,M. M.Hosen, D. S.Sanchez, R.Sankar, M.Szlawska, S. Y.Xu, K.Dimitri, N.Dhakal,P.Maldonado, P. M.Oppeneer, D.Kaczorowski, F.Chou, M. Z.Hasan, and T.Durakiewicz, Observation of topological nodal fermion semimetal phase in ZrSiS, Phys. Rev. B93(20), 201104(2016)
CrossRef ADS Google scholar
[19]
M. M.Hosen, K.Dimitri, I.Belopolski, P.Maldonado, R.Sankar, N.Dhakal, G.Dhakal, T.Cole, P. M.Oppeneer, D.Kaczorowski, F.Chou, M. Z.Hasan, T.Durakiewicz, and M.Neupane, Tunability of the topological nodal-line semimetal phase in ZrSiX-type materials (X=S, Se, Te), Phys. Rev. B95(16), 161101(2017)
CrossRef ADS Google scholar
[20]
Q.Xu, Z.Song, S.Nie, H.Weng, Z.Fang, and X.Dai, Two-dimensional oxide topological insulator with ironpnictide superconductor LiFeAs structure, Phys. Rev. B92(20), 205310(2015)
CrossRef ADS Google scholar
[21]
A.Topp, J. M.Lippmann, A.Varykhalov, V.Duppel, B. V.Lotsch, C. R.Ast, and L. M.Schoop, Nonsymmorphic band degeneracy at the Fermi level in Zr- SiTe, New J. Phys. 18(12), 125014(2016)
CrossRef ADS Google scholar
[22]
X.Wang, X.Pan, M.Gao, J.Yu,J.Jiang, J.Zhang, H.Zuo, M.Zhang, Z.Wei, W.Niu, Z.Xia, X.Wan, Y.Chen, F.Song, Y.Xu, B.Wang, G.Wang, and R.Zhang, Evidence of both surface and bulk Dirac bands and anisotropic nonsaturating magnetoresistance in ZrSiS, Advanced Electronic Materials2(10), 1600228(2016)
CrossRef ADS Google scholar
[23]
Y. Y.Lv, B. B.Zhang, X.Li,S. H.Yao, Y.Chen, J.Zhou, S. T.Zhang, M. H.Lu, and Y. F.Chen, Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals, Appl. Phys. Lett. 108(24), 244101(2016)
CrossRef ADS Google scholar
[24]
M. N.Ali, L. M.Schoop, C.Garg, J. M.Lippmann, E.Lara, B.Lotsch, and S. S.Parkin, Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS, Sci. Adv. 2(12), e1601742(2016)
CrossRef ADS Google scholar
[25]
M.Matusiak, J.Cooper, and D.Kaczorowski, Thermoelectric quantum oscillations in ZrSiS, Nat. Commun. 8, 15219(2017)
CrossRef ADS Google scholar
[26]
J.Hu, Z.Tang, J.Liu, X.Liu, Y.Zhu,D.Graf, K.Myhro, S.Tran, C. N.Lau, J.Wei, and Z.Mao, Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe, Phys. Rev. Lett. 117(1), 016602(2016)
CrossRef ADS Google scholar
[27]
R.Sankar,G.Peramaiyan, I. P.Muthuselvam, C. J.Butler, K.Dimitri, M.Neupane, G. N.Rao, M. T.Lin, and F. C.Chou, Crystal growth of Dirac semimetal Zr- SiS with high magnetoresistance and mobility, Sci. Rep. 7, 40603(2017)
CrossRef ADS Google scholar
[28]
S.Pezzini, M.van Delft, L.Schoop, B.Lotsch, A.Carrington, M.Katsnelson, N.Hussey, and S.Wiedmann, Unconventional mass enhancement around the Dirac nodal loop in ZrSiS, arXiv: 1701.09119 (2017)
[29]
C.Hurd, The Hall effect in Metals and Alloys, Springer Science & Business Media, 2012
[30]
D. X.Qu, Y. S.Hor, J.Xiong, R. J.Cava, and N. P.Ong, Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3, Science329(5993), 821(2010)
CrossRef ADS Google scholar
[31]
K.Eto, Z.Ren, A.Taskin, K.Segawa, and Y.Ando, Angular-dependent oscillations of the magnetoresistance in Bi2Se3 due to the three-dimensional bulk Fermi surface, Phys. Rev. B81(19), 195309(2010)
CrossRef ADS Google scholar
[32]
Y.Zhang, Y. W.Tan, H. L.Stormer, and P.Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature438(7065), 201(2005)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(9047 KB)

Accesses

Citations

Detail

Sections
Recommended

/