Two-carrier transport in SrMnBi2 thin films

Xiao Yan, Cheng Zhang, Shan-Shan Liu, Yan-Wen Liu, David Wei Zhang, Fa-Xian Xiu, Peng Zhou

PDF(14702 KB)
PDF(14702 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127209. DOI: 10.1007/s11467-017-0663-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Two-carrier transport in SrMnBi2 thin films

Author information +
History +

Abstract

Monocrystalline SrMnBi2 thin films were grown by molecular beam epitaxy (MBE), and their transport properties were investigated. A high and unsaturated linear magnetoresistance (MR) was observed, which exhibited a transition from a semi-classical weak-field B2 dependence to a high-field linear dependence. An unusual nonlinear Hall resistance was also observed because of the anisotropic Dirac fermions. The two-carrier model was adopted to analyze the unusual Hall resistance quantitatively. The fitting results yielded carrier densities and mobilities of 3.75×1014 cm−2 and 850 cm2·V−1s−1, respectively, for holes, and 1.468×1013 cm−2, 4118 cm2·V−1·s−1, respectively, for electrons, with a hole-dominant conduction at 2.5 K. Hence, an effective mobility can be achieved, which is in reasonable agreement with the effective hole mobility of 1800 cm2·V−1·s−1, extracted from the MR. Further, the angle-dependent MR, proportional to cosθ, where θ is the angle between the external magnetic field and the perpendicular orientation of the sample plane, also implies a high anisotropy of the Fermi surface. Our results about SrMnBi2 thin films, as one of a new class of AEMnBi2 and AEMnSb2 (AE= Ca, Sr, Ba, Yb, Eu) materials, suggest that they have a lot of exotic transport properties to be investigated, and that their high mobility might facilitate electronic device applications.

Keywords

SrMnBi2 / thin films / magnetoresistance / two carriers / anisotropic Dirac fermions

Cite this article

Download citation ▾
Xiao Yan, Cheng Zhang, Shan-Shan Liu, Yan-Wen Liu, David Wei Zhang, Fa-Xian Xiu, Peng Zhou. Two-carrier transport in SrMnBi2 thin films. Front. Phys., 2017, 12(3): 127209 https://doi.org/10.1007/s11467-017-0663-0

References

[1]
K. Ziegler, Robust transport properties in graphene, Phys. Rev. Lett. 97(26), 266802 (2006)
CrossRef ADS Google scholar
[2]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007)
CrossRef ADS Google scholar
[3]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
CrossRef ADS Google scholar
[4]
J. Moore, Topological insulators: The next generation, Nat. Phys. 5(6), 378 (2009)
[5]
T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)
CrossRef ADS Google scholar
[6]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[7]
K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, Electronic properties of graphene, physica status solidi(b), 244(11), 4106 (2007)
[8]
A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)
CrossRef ADS Google scholar
[9]
A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B 58(5), 2788 (1998)
CrossRef ADS Google scholar
[10]
D. K. S. Bertolazzi and A. Kis, Nonvolatile memory cells based on MoS2-graphene heterostructures, ACS Nano 7(4), 7 (2013)
CrossRef ADS Google scholar
[11]
S. J. Han, A. V. Garcia, S. Oida, K. A. Jenkins, and W. Haensch, Graphene radio frequency receiver integrated circuit, Nat. Commun. 5, 3086 (2014)
CrossRef ADS Google scholar
[12]
L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014)
CrossRef ADS Google scholar
[13]
J. B. He, D. M. Wang, and G. F. Chen, Giant magnetoresistance in layered manganese pnictide CaMnBi2, Appl. Phys. Lett. 100(11), 112405 (2012)
CrossRef ADS Google scholar
[14]
Y. F. Guo, A. J. Princep, X. Zhang, P. Manuel, D. Khalyavin, I. I. Mazin, Y. G. Shi, and A. T. Boothroyd, Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A= Sr, Ca), Phys. Rev. B 90, 075120 (2014)
CrossRef ADS Google scholar
[15]
M. A. Farhan, G. Lee, and J. H. Shim, AEMnSb2 (AE= Sr, Ba): A new class of Dirac materials, J. Phys.: Condens. Matter 26(4), 042201 (2014)
CrossRef ADS Google scholar
[16]
K. Wang, L. Wang, and C. Petrovic, Large magnetothermopower effect in Dirac materials (Sr/Ca)MnBi2, Appl. Phys. Lett. 100(11), 112111 (2012)
CrossRef ADS Google scholar
[17]
H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, and S. Ishiwata, Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined 2d Dirac fermions, Sci. Adv. 2(1), e1501117 (2016)
CrossRef ADS Google scholar
[18]
K. F. Wang, D. Graf, H. C. Lei, S. W. Tozer, and C. Petrovic, Quantum transport of two-dimensional Dirac fermions in SrMnBi2, Phys. Rev. B 84, 220401(R)
CrossRef ADS Google scholar
[19]
J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107(12), 126402 (2011)
CrossRef ADS Google scholar
[20]
J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402
CrossRef ADS Google scholar
[21]
A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, Massless fermions in organic conductor, J. Phys. Soc. Jpn. 76(3), 034711 (2007)
CrossRef ADS Google scholar
[22]
H.-H. Kuo, J.-H. Chu, S. C. Riggs, L. Yu, P. L. McMahon, K. De Greve, Y. Yamamoto, J. G. Analytis, and I. R. Fisher, Possible origin of the nonmonotonic doping dependence of the in-plane resistivity anisotropy of Ba(Fe1−xTx)2As2 (T= Co, Ni, and Cu), Phys. Rev. B 84, 054540
CrossRef ADS Google scholar
[23]
K. K. Huynh, Y. Tanabe, and K. Tanigaki, Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance, Phys. Rev. Lett. 106(21), 217004 (2011)
CrossRef ADS Google scholar
[24]
L. Kouwenhoven and L. Glazman, Revival of the Kondo effect, Phys. World 14(1), 33 (2001)
CrossRef ADS Google scholar
[25]
S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Extremely high electron mobility in a phononglass semimetal, Nat. Mater. 12(6), 512 (2013)
CrossRef ADS Google scholar
[26]
A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. Rosenbaum, and M. L. Saboung, Megagauss sensors, Nature 417, 421 (2002)
CrossRef ADS Google scholar
[27]
J. Xiong, S. K. Kushwaha, Tian Liang, J. W. Krizan, M. Hirschberger, Wudi Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)
CrossRef ADS Google scholar
[28]
J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402 (2011)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop
AI Summary AI Mindmap
PDF(14702 KB)

Accesses

Citations

Detail

Sections
Recommended

/