Two-carrier transport in SrMnBi2 thin films

Xiao Yan , Cheng Zhang , Shan-Shan Liu , Yan-Wen Liu , David Wei Zhang , Fa-Xian Xiu , Peng Zhou

Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127209

PDF (14702KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (3) : 127209 DOI: 10.1007/s11467-017-0663-0
RESEARCH ARTICLE

Two-carrier transport in SrMnBi2 thin films

Author information +
History +
PDF (14702KB)

Abstract

Monocrystalline SrMnBi2 thin films were grown by molecular beam epitaxy (MBE), and their transport properties were investigated. A high and unsaturated linear magnetoresistance (MR) was observed, which exhibited a transition from a semi-classical weak-field B2 dependence to a high-field linear dependence. An unusual nonlinear Hall resistance was also observed because of the anisotropic Dirac fermions. The two-carrier model was adopted to analyze the unusual Hall resistance quantitatively. The fitting results yielded carrier densities and mobilities of 3.75×1014 cm−2 and 850 cm2·V−1s−1, respectively, for holes, and 1.468×1013 cm−2, 4118 cm2·V−1·s−1, respectively, for electrons, with a hole-dominant conduction at 2.5 K. Hence, an effective mobility can be achieved, which is in reasonable agreement with the effective hole mobility of 1800 cm2·V−1·s−1, extracted from the MR. Further, the angle-dependent MR, proportional to cosθ, where θ is the angle between the external magnetic field and the perpendicular orientation of the sample plane, also implies a high anisotropy of the Fermi surface. Our results about SrMnBi2 thin films, as one of a new class of AEMnBi2 and AEMnSb2 (AE= Ca, Sr, Ba, Yb, Eu) materials, suggest that they have a lot of exotic transport properties to be investigated, and that their high mobility might facilitate electronic device applications.

Keywords

SrMnBi2 / thin films / magnetoresistance / two carriers / anisotropic Dirac fermions

Cite this article

Download citation ▾
Xiao Yan, Cheng Zhang, Shan-Shan Liu, Yan-Wen Liu, David Wei Zhang, Fa-Xian Xiu, Peng Zhou. Two-carrier transport in SrMnBi2 thin films. Front. Phys., 2017, 12(3): 127209 DOI:10.1007/s11467-017-0663-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Ziegler, Robust transport properties in graphene, Phys. Rev. Lett. 97(26), 266802 (2006)

[2]

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007)

[3]

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)

[4]

J. Moore, Topological insulators: The next generation, Nat. Phys. 5(6), 378 (2009)

[5]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14(3), 280 (2015)

[6]

M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

[7]

K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, Electronic properties of graphene, physica status solidi(b), 244(11), 4106 (2007)

[8]

A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)

[9]

A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B 58(5), 2788 (1998)

[10]

D. K. S. Bertolazzi and A. Kis, Nonvolatile memory cells based on MoS2-graphene heterostructures, ACS Nano 7(4), 7 (2013)

[11]

S. J. Han, A. V. Garcia, S. Oida, K. A. Jenkins, and W. Haensch, Graphene radio frequency receiver integrated circuit, Nat. Commun. 5, 3086 (2014)

[12]

L. Yu, Y. H. Lee, X. Ling, E. J. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014)

[13]

J. B. He, D. M. Wang, and G. F. Chen, Giant magnetoresistance in layered manganese pnictide CaMnBi2, Appl. Phys. Lett. 100(11), 112405 (2012)

[14]

Y. F. Guo, A. J. Princep, X. Zhang, P. Manuel, D. Khalyavin, I. I. Mazin, Y. G. Shi, and A. T. Boothroyd, Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A= Sr, Ca), Phys. Rev. B 90, 075120 (2014)

[15]

M. A. Farhan, G. Lee, and J. H. Shim, AEMnSb2 (AE= Sr, Ba): A new class of Dirac materials, J. Phys.: Condens. Matter 26(4), 042201 (2014)

[16]

K. Wang, L. Wang, and C. Petrovic, Large magnetothermopower effect in Dirac materials (Sr/Ca)MnBi2, Appl. Phys. Lett. 100(11), 112111 (2012)

[17]

H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, and S. Ishiwata, Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined 2d Dirac fermions, Sci. Adv. 2(1), e1501117 (2016)

[18]

K. F. Wang, D. Graf, H. C. Lei, S. W. Tozer, and C. Petrovic, Quantum transport of two-dimensional Dirac fermions in SrMnBi2, Phys. Rev. B 84, 220401(R)

[19]

J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107(12), 126402 (2011)

[20]

J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402

[21]

A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, Massless fermions in organic conductor, J. Phys. Soc. Jpn. 76(3), 034711 (2007)

[22]

H.-H. Kuo, J.-H. Chu, S. C. Riggs, L. Yu, P. L. McMahon, K. De Greve, Y. Yamamoto, J. G. Analytis, and I. R. Fisher, Possible origin of the nonmonotonic doping dependence of the in-plane resistivity anisotropy of Ba(Fe1−xTx)2As2 (T= Co, Ni, and Cu), Phys. Rev. B 84, 054540

[23]

K. K. Huynh, Y. Tanabe, and K. Tanigaki, Both electron and hole Dirac cone states in Ba(FeAs)2 confirmed by magnetoresistance, Phys. Rev. Lett. 106(21), 217004 (2011)

[24]

L. Kouwenhoven and L. Glazman, Revival of the Kondo effect, Phys. World 14(1), 33 (2001)

[25]

S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Extremely high electron mobility in a phononglass semimetal, Nat. Mater. 12(6), 512 (2013)

[26]

A. Husmann, J. B. Betts, G. S. Boebinger, A. Migliori, T. F. Rosenbaum, and M. L. Saboung, Megagauss sensors, Nature 417, 421 (2002)

[27]

J. Xiong, S. K. Kushwaha, Tian Liang, J. W. Krizan, M. Hirschberger, Wudi Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)

[28]

J. Park, G. Lee, F. Wolff-Fabris, Y. Y. Koh, M. J. Eom, Y. K. Kim, M. A. Farhan, Y. J. Jo, C. Kim, J. H. Shim, and J. S. Kim, Anisotropic Dirac fermions in a Bi square net of SrMnBi2, Phys. Rev. Lett. 107, 126402 (2011)

RIGHTS & PERMISSIONS

The Author(s) 2017. This article is published with open access at www.springer.com/11467 and journal.hep.com.cn/fop

AI Summary AI Mindmap
PDF (14702KB)

1100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/