Renormalization group theory for temperature-driven first-order phase transitions in scalar models

Ning Liang, Fan Zhongy

PDF(437 KB)
PDF(437 KB)
Front. Phys. ›› 2017, Vol. 12 ›› Issue (6) : 126403. DOI: 10.1007/s11467-016-0633-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Renormalization group theory for temperature-driven first-order phase transitions in scalar models

Author information +
History +

Abstract

We study the scaling and universal behavior of temperature-driven first-order phase transitions in scalar models. These transitions are found to exhibit rich phenomena, though they are controlled by a single complex-conjugate pair of imaginary fixed points of φ3 theory. Scaling theories and renormalization group theories are developed to account for the phenomena, and three universality classes with their own hysteresis exponents are found: a field-like thermal class, a partly thermal class, and a purely thermal class, designated, respectively, as Thermal Classes I, II, and III. The first two classes arise from the opposite limits of the scaling forms proposed and may cross over to each other depending on the temperature sweep rate. They are both described by a massless model and a purely massive model, both of which are equivalent and are derived from φ3 theory via symmetry. Thermal Class III characterizes the cooling transitions in the absence of applied external fields and is described by purely thermal models, which include cases in which the order parameters possess different symmetries and thus exhibit different universality classes. For the purely thermal models whose free energies contain odd-symmetry terms, Thermal Class III emerges only at the mean-field level and is identical to Thermal Class II. Fluctuations change the model into the other two models. Using the extant three- and twoloop results for the static and dynamic exponents for the Yang–Lee edge singularity, respectively, which falls into the same universality class as φ3 theory, we estimate the thermal hysteresis exponents of the various classes to the same precision. Comparisons with numerical results and experiments are briefly discussed.

Keywords

first-order phase transitions / thermal phase transitions / renormalization group theory / φ3 theory / scaling and universality / thermal classes / instability exponents / finite-time scaling / scalar model / dynamics / thermal hysteresis

Cite this article

Download citation ▾
Ning Liang, Fan Zhongy. Renormalization group theory for temperature-driven first-order phase transitions in scalar models. Front. Phys., 2017, 12(6): 126403 https://doi.org/10.1007/s11467-016-0633-y

References

[1]
Z. C. Lin, K. F. Liang, W. G. Zeng, and J. X. Zhang, Dynamic equation and characteristic internal frictions of mobile interfaces in phase transitions, in: Internal Friction and Ultrasonic Attenuation, eds. T. S. Ke and L. D. Zhang, Beijing: Atomic Energy Press of China, 1989, p. 87
[2]
K. F. Liang, Z. C. Lin, P. C. W. Fung, and J. X. Zhang, Characterization of the thermoelastic martensitic transformation in a NiTi alloy driven by temperature variation and external stress, Phys. Rev. B 56(5), 2453 (1997)
CrossRef ADS Google scholar
[3]
See, e. g., J. X. Zhang, F. Zhong, and G. G. Siu, The scanning-rate dependence of energy dissipation in firstorder phase transition of solids, Solid State Commun. 97(10), 847 (1996)
CrossRef ADS Google scholar
[4]
J. Liu and J. X. Zhang, Temperature-rate dependent kinetics of martensitic transformation in MnCu alloy, Solid State Commun. 98(6), 539 (1996)
CrossRef ADS Google scholar
[5]
P. C. W. Fung, J. X. Zhang, Y. Lin, K. F. Liang, and Z. C. Lin, Analysis of dissipation of a burst-type martensite transformation in a Fe-Mn alloy by internal friction measurements, Phys. Rev. B 54(10), 7074 (1996)
CrossRef ADS Google scholar
[6]
Z. Q. Kuang, J. X. Zhang, X. H. Zhang, K. F. Liang, and P. C. W. Fung, Scaling behaviours in the thermoelastic martensitic transformation of Co, Solid State Commun. 114(4), 231 (2000)
CrossRef ADS Google scholar
[7]
M. Rao and R. Pandit, Magnetic and thermal hysteresis in the O(N)-symmetric (φ2)3 model, Phys. Rev. B 43(4), 3373 (1991)
CrossRef ADS Google scholar
[8]
F. Zhong and J. X. Zhang, Scaling of thermal hysteresis with temperature scanning rate, Phys. Rev. E 51(4), 2898 (1995)
CrossRef ADS Google scholar
[9]
S. Yıldız, Ö. Pekcan, A. N. Berker, and H. Özbek, Scaling of thermal hysteresis at nematic-smectic-A phase transition in a binary mixture, Phys. Rev. E 69(3), 031705 (2004)
CrossRef ADS Google scholar
[10]
F. Zhong, and Q. Z. Chen, Theory of the dynamics of first-order phase transitions: Unstable fixed points, exponents, and dynamical scaling, Phys. Rev. Lett. 95(17), 175701 (2005)
CrossRef ADS Google scholar
[11]
F. Zhong, Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model, Front. Phys. 12, 126403 (2017)
CrossRef ADS Google scholar
[12]
F. Zhong, Imaginary fixed points can be physical, Phys. Rev. E 86(2), 022104 (2012)
CrossRef ADS Google scholar
[13]
S. Fan and F. Zhong, Evidences of the instability fixed points of first-order phase transitions, J. Stat. Phys. 143(6), 1136 (2011)
CrossRef ADS Google scholar
[14]
Y. T. Li and F. Zhong, Functional renormalization group approach to the dynamics of first-order phase transitions, arXiv: 1111.1573 (2011)
[15]
M. E. Fisher, Yang–Lee edge singularity and φ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
CrossRef ADS Google scholar
[16]
J. D. Gunton and D. Droz, Introduction to the Theory of Metastable and Unstable States, Berlin: Springer, 1983
CrossRef ADS Google scholar
[17]
J. D. Gunton, M. San Miguel, and P. S. Sahni, in: Phase Transitions and Critical Phenomena, eds. C. Domb and J. L. Lebowitz, Vol. 8, London: Academic, 1983
[18]
K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50(7), 783 (1987)
CrossRef ADS Google scholar
[19]
K. Binder and P. Fratzl, in: Phase Transformations in Materials, ed. G. Kostorz, Weinheim: Wiley, 2001
[20]
K. Binder, C. Billotet, and P. Mirold, On the theory of spinodal decomposition in solid and liquid binary mixtures, Z. Phys. B 30(2), 183 (1978)
CrossRef ADS Google scholar
[21]
C. Billotet and K. Binder, Nonlinear relaxation at firstorder phase transitions: A Ginzburg–Landau theory including fluctuations, Z. Phys. B 32(2), 195 (1979)
CrossRef ADS Google scholar
[22]
K. Kawasaki, T. Imaeda, and J. D. Gunton, in: Perspectives in Statistical Physics, ed. H. J. Raveché, Amsterdam: North Holland, 1981, p. 201
[23]
K. Kaski, K. Binder, and J. D. Gunton, A study of a coarse-grained free energy functional for the threedimensional Ising model, J. Phys. A 16(16), L623 (1983)
CrossRef ADS Google scholar
[24]
K. Kaski, K. Binder, and J. D. Gunton, Study of cell distribution functions of the three-dimensional Ising model, Phys. Rev. B 29(7), 3996 (1984)
CrossRef ADS Google scholar
[25]
D. W. Heermann, W. Klein, and D. Stauffer, Spinodals in a long-range interaction system, Phys. Rev. Lett. 49, 1262 (1982)
CrossRef ADS Google scholar
[26]
N. Gulbahce, H. Gould, and W. Klein, Zeros of the partition function and pseudospinodals in long-range Ising models, Phys. Rev. E 69(3), 036119 (2004)
CrossRef ADS Google scholar
[27]
J. S. Langer, Theory of the condensation point, Ann. Phys. 41(1), 108 (1967)
CrossRef ADS Google scholar
[28]
W. Klein and C. Unger, Pseudospinodals, spinodals, and nucleation, Phys. Rev. B 28(1), 445 (1983)
CrossRef ADS Google scholar
[29]
C. Unger and W. Klein, Nucleation theory near the classical spinodal, Phys. Rev. B 29(5), 2698 (1984)
CrossRef ADS Google scholar
[30]
D. W. Oxtoby, Homogeneous nucleation: Theory and experiment, J. Phys.: Condens. Matter 4(38), 7627 (1992)
CrossRef ADS Google scholar
[31]
P. B. Thomas and D. Dhar, Hysteresis in isotropic spin systems, J. Phys. A 26(16), 3973 (1993)
CrossRef ADS Google scholar
[32]
S. W. Sides, P. A. Rikvold, and M. A. Novotny, Stochastic hysteresis and resonance in a kinetic Ising system, Phys. Rev. E 57(6), 6512 (1998)
CrossRef ADS Google scholar
[33]
S. W. Sides, P. A. Rikvold, and M. A. Novotny, Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition, Phys. Rev. E 59(3), 2710 (1999)
CrossRef ADS Google scholar
[34]
M. Acharyya and B. K. Chakrabarti, Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility, Phys. Rev. B 52(9), 6550 (1995)
CrossRef ADS Google scholar
[35]
L. D. Landau and E. M. Lifshitz, Statistical Physics, Ch. XIV, Oxford: Pergamon, 1986
[36]
P. G. de Gennes, Short range order effects in the isotropic phase of nematics and cholesterics, Mol. Cryst. Liq. Cryst. 12(3), 193 (1971)
CrossRef ADS Google scholar
[37]
A. F. Devonshire, Theory of barium titanate (Part I), Phil. Mag. 40, 1040 (1949); A. F. Devonshire, Theory of barium titanate (Part II), Phil. Mag. 42, 1065 (1951)
CrossRef ADS Google scholar
[38]
P. C. Hohenberg, and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49(3), 435 (1977)
CrossRef ADS Google scholar
[39]
N. Breuer and H. K. Janssen, Equation of state and dynamical properties near the Yang–Lee edge singularity, Z. Phys. Condensed Matter 41(1), 55 (1981)
CrossRef ADS Google scholar
[40]
F. Zhong, Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving, Phys. Rev. E 73(4), 047102 (2006)
CrossRef ADS Google scholar
[41]
S. Gong, F. Zhong, X. Huang, and S. Fan, Finite-time scaling via linear driving, New J. Phys. 12(4), 043036 (2010)
CrossRef ADS Google scholar
[42]
F. Zhong, Finite-time scaling and its applications to continuous phase transitions, in Applications of Monte Carlo Method in Science and Engineering, ed. S. Mordechai, p. 469, Rijeka: Intech, 2011. Available at http://www.intechopen.com/articles/show/title/ finite-time-scaling-and-its-applications-to-continuousphase- transitions
[43]
CRC Standard Mathematical Tables & Formulae, ed. D. Zwillinger, 30th Ed., Florida: CRC, 1996
[44]
P. Jung, G. Gray, R. Roy, and P. Mandel, Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65(15), 1873 (1990)
CrossRef ADS Google scholar
[45]
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd Ed., Oxford: Clarendon, 1996
[46]
D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, 3nd Ed., Singapore: World Scientific, 2005
CrossRef ADS Google scholar
[47]
H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theory, Singapore: World Scientific, 2001
CrossRef ADS Google scholar
[48]
A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, London: Chapman and Hall/CRC, 2004
CrossRef ADS Google scholar
[49]
F. J. Wegner and E. K. Riedel, Logarithmic corrections to the molecular-field behavior of critical and tricritical systems, Phys. Rev. B 7(1), 248 (1973)
CrossRef ADS Google scholar
[50]
K. G. Wilson and J. Kogut, The renormalization group and the ε expansion, Phys. Rep. 12(2), 75 (1974)
CrossRef ADS Google scholar
[51]
S. K. Ma, Modern Theory of Critical Phenomena, Benjamin, 1976
[52]
H. K. Janssen, in: Dynamical Critical Phenomena and Related topics, Lecture Notes in Physics, Vol. 104, ed. C. P. Enz, Berlin: Springer, 1979
CrossRef ADS Google scholar
[53]
H. K. Janssen, in: From Phase Transition to Chaos, edited by G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, Singapore: World Scientific, 1992
[54]
U. C. Täuber, Critical Dynamics, http://www.phys.vt. edu/~tauber/utaeuber.html
[55]
P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. Rev. A 8(1), 423 (1973)
CrossRef ADS Google scholar
[56]
G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44(1), 189 (1972)
CrossRef ADS Google scholar
[57]
C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems, Phys. Rev. B 18(1), 353 (1978)
CrossRef ADS Google scholar
[58]
O. F. A. Bonfim, J. E. Kirkham, and A. J. McKane, Critical exponents to order ε3 for φ3 models of critical phenomena in 6-εdimensions, J. Phys. Math.Gen. 13(7), L247 (1980)
CrossRef ADS Google scholar
[59]
O. F. A. Bonfirm, J. E. Kirkham, and A. J. McKane, Critical exponents for the percolation problem and the Yang–Lee edge singularity, J. Phys. Math. Gen. 14(9), 2391 (1981)
CrossRef ADS Google scholar
[60]
J. Yu, Scaling of first-order phase transition dynamics, Master thesis, Sun Yat-sen University, 2012 (unpublished)

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(437 KB)

Accesses

Citations

Detail

Sections
Recommended

/