Immirzi parameter and quasinormal modes in four and higher spacetime dimensions
Xiang-Dong Zhang
Immirzi parameter and quasinormal modes in four and higher spacetime dimensions
There is a one-parameter quantization ambiguity in loop quantum gravity, which is called the Immirzi parameter. In this paper, we fix this free parameter by considering the quasinormal mode spectrum of black holes in four and higher spacetime dimensions. As a consequence, our result is consistent with the Bekenstein–Hawking entropy of a black hole. Moreover, we also give a possible quantum gravity explanation of the universal ln 3 behavior of the quasinormal mode spectrum.
Immirzi parameter / quasinormal mode / loop quantum gravity
[1] |
C. Rovelli, Quantum Gravity, Cambridge University Press, 2004
CrossRef
ADS
Google scholar
|
[2] |
T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press, 2007
CrossRef
ADS
Google scholar
|
[3] |
A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quantum Gravity 21(15), R53 (2004)
CrossRef
ADS
Google scholar
|
[4] |
M. Han, Y. Ma, and W. Huang, Fundamental structure of loop quantum gravity, Int. J. Mod. Phys. D 16(09), 1397 (2007)
CrossRef
ADS
Google scholar
|
[5] |
A. Ashtekar and P. Singh, Loop quantum cosmology: A status report, Class. Quantum Gravity 28(21), 213001 (2011)
CrossRef
ADS
Google scholar
|
[6] |
C. Rovelli, Loop quantum gravity: The first 25 years, Class. Quantum Gravity 28(15), 153002 (2011)
CrossRef
ADS
Google scholar
|
[7] |
J. Barbero and A. Perez, Quantum geometry and black holes, arXiv: 1501.02963
|
[8] |
C. Rovelli and T. Thiemann, Immirzi parameter in quantum general relativity, Phys. Rev. D 57(2), 1009 (1998)
CrossRef
ADS
Google scholar
|
[9] |
O. Dreyer, Quasinormal modes, the area spectrum, and black hole entropy, Phys. Rev. Lett. 90(8), 081301 (2003)
CrossRef
ADS
Google scholar
|
[10] |
S. Hod, Bohr's correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett. 81(20), 4293 (1998)
CrossRef
ADS
Google scholar
|
[11] |
L. Motl, An analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys. 6, 1135 (2003)
CrossRef
ADS
Google scholar
|
[12] |
A. Corichi, Quasinormal modes, black hole entropy, and quantum geometry, Phys. Rev. D 67(8), 087502 (2003)
CrossRef
ADS
Google scholar
|
[13] |
Y. Ling and H. Zhang, Quasinormal modes prefer supersymmetry? Phys. Rev. D 68(10), 101501 (2003)
CrossRef
ADS
Google scholar
|
[14] |
L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7(2), 307 (2003)
CrossRef
ADS
Google scholar
|
[15] |
V. Cardoso, J. Lemos, and S. Yoshida, Quasinormal modes of Schwarzschild black holes in four and higher dimensions, Phys. Rev. D 69(4), 044004 (2004)
CrossRef
ADS
Google scholar
|
[16] |
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (I): Hamiltonian analysis, Class. Quantum Gravity 30(4), 045001 (2013)
CrossRef
ADS
Google scholar
|
[17] |
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (II): Lagrangian analysis, Class. Quantum Gravity 30(4), 045002 (2013)
CrossRef
ADS
Google scholar
|
[18] |
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (III): Quantum theory, Class. Quantum Gravity 30(4), 045003 (2013)
CrossRef
ADS
Google scholar
|
[19] |
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (IV): Matter coupling, Class. Quantum Gravity 30(4), 045004 (2013)
CrossRef
ADS
Google scholar
|
[20] |
N. Bodendorfer, Black hole entropy from loop quantum gravity in higher dimensions, Phys. Lett. B 726(4-5), 887 (2013)
CrossRef
ADS
Google scholar
|
[21] |
X. Zhang, Higher dimensional loop quantum cosmology, arXiv: 1506.05597
|
/
〈 | 〉 |