Immirzi parameter and quasinormal modes in four and higher spacetime dimensions

Xiang-Dong Zhang

PDF(145 KB)
PDF(145 KB)
Front. Phys. ›› 2016, Vol. 11 ›› Issue (4) : 110401. DOI: 10.1007/s11467-016-0561-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Immirzi parameter and quasinormal modes in four and higher spacetime dimensions

Author information +
History +

Abstract

There is a one-parameter quantization ambiguity in loop quantum gravity, which is called the Immirzi parameter. In this paper, we fix this free parameter by considering the quasinormal mode spectrum of black holes in four and higher spacetime dimensions. As a consequence, our result is consistent with the Bekenstein–Hawking entropy of a black hole. Moreover, we also give a possible quantum gravity explanation of the universal ln 3 behavior of the quasinormal mode spectrum.

Keywords

Immirzi parameter / quasinormal mode / loop quantum gravity

Cite this article

Download citation ▾
Xiang-Dong Zhang. Immirzi parameter and quasinormal modes in four and higher spacetime dimensions. Front. Phys., 2016, 11(4): 110401 https://doi.org/10.1007/s11467-016-0561-x

References

[1]
C. Rovelli, Quantum Gravity, Cambridge University Press, 2004
CrossRef ADS Google scholar
[2]
T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge University Press, 2007
CrossRef ADS Google scholar
[3]
A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quantum Gravity 21(15), R53 (2004)
CrossRef ADS Google scholar
[4]
M. Han, Y. Ma, and W. Huang, Fundamental structure of loop quantum gravity, Int. J. Mod. Phys. D 16(09), 1397 (2007)
CrossRef ADS Google scholar
[5]
A. Ashtekar and P. Singh, Loop quantum cosmology: A status report, Class. Quantum Gravity 28(21), 213001 (2011)
CrossRef ADS Google scholar
[6]
C. Rovelli, Loop quantum gravity: The first 25 years, Class. Quantum Gravity 28(15), 153002 (2011)
CrossRef ADS Google scholar
[7]
J. Barbero and A. Perez, Quantum geometry and black holes, arXiv: 1501.02963
[8]
C. Rovelli and T. Thiemann, Immirzi parameter in quantum general relativity, Phys. Rev. D 57(2), 1009 (1998)
CrossRef ADS Google scholar
[9]
O. Dreyer, Quasinormal modes, the area spectrum, and black hole entropy, Phys. Rev. Lett. 90(8), 081301 (2003)
CrossRef ADS Google scholar
[10]
S. Hod, Bohr's correspondence principle and the area spectrum of quantum black holes, Phys. Rev. Lett. 81(20), 4293 (1998)
CrossRef ADS Google scholar
[11]
L. Motl, An analytical computation of asymptotic Schwarzschild quasinormal frequencies, Adv. Theor. Math. Phys. 6, 1135 (2003)
CrossRef ADS Google scholar
[12]
A. Corichi, Quasinormal modes, black hole entropy, and quantum geometry, Phys. Rev. D 67(8), 087502 (2003)
CrossRef ADS Google scholar
[13]
Y. Ling and H. Zhang, Quasinormal modes prefer supersymmetry? Phys. Rev. D 68(10), 101501 (2003)
CrossRef ADS Google scholar
[14]
L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7(2), 307 (2003)
CrossRef ADS Google scholar
[15]
V. Cardoso, J. Lemos, and S. Yoshida, Quasinormal modes of Schwarzschild black holes in four and higher dimensions, Phys. Rev. D 69(4), 044004 (2004)
CrossRef ADS Google scholar
[16]
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (I): Hamiltonian analysis, Class. Quantum Gravity 30(4), 045001 (2013)
CrossRef ADS Google scholar
[17]
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (II): Lagrangian analysis, Class. Quantum Gravity 30(4), 045002 (2013)
CrossRef ADS Google scholar
[18]
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (III): Quantum theory, Class. Quantum Gravity 30(4), 045003 (2013)
CrossRef ADS Google scholar
[19]
N. Bodendorfer, T. Thiemann, and A. Thurn, New variables for classical and quantum gravity in all dimensions (IV): Matter coupling, Class. Quantum Gravity 30(4), 045004 (2013)
CrossRef ADS Google scholar
[20]
N. Bodendorfer, Black hole entropy from loop quantum gravity in higher dimensions, Phys. Lett. B 726(4-5), 887 (2013)
CrossRef ADS Google scholar
[21]
X. Zhang, Higher dimensional loop quantum cosmology, arXiv: 1506.05597

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(145 KB)

Accesses

Citations

Detail

Sections
Recommended

/