Quasiparticle scattering interference in the renormalized Hubbard model

Shu-Hua Wang, Huai-Song Zhao, Feng Yuan

PDF(452 KB)
PDF(452 KB)
Front. Phys. ›› 2015, Vol. 10 ›› Issue (1) : 107401. DOI: 10.1007/s11467-014-0446-9
Condensed Matter, Materials Physics, and Statistical Physics
Condensed Matter, Materials Physics, and Statistical Physics

Quasiparticle scattering interference in the renormalized Hubbard model

Author information +
History +

Abstract

In this paper, we study the quasiparticle scattering interference phenomenon in the presence of a single impurity within the renormalized Hubbard model. By calculating the energy and momentum dependence of the Fourier-transformed local density of states in the full Brillouin zone, we can qualitatively describe the main features of the quasiparticle scattering interference phenomenon in cuprate superconductors using a single point-like impurity. In particular, we show that with increasing energy, the position of the peak along the nodal ([0, 0] → [π, π]) direction moves steadily to a large momentum region, while the position of the peak along the antinodal ([0, 0] → [π, 0]) direction moves toward the center of the Brillouin zone.

Graphical abstract

Keywords

impurity / renormalized Hubbard model / local density of states / Gutzwiller approximation

Cite this article

Download citation ▾
Shu-Hua Wang, Huai-Song Zhao, Feng Yuan. Quasiparticle scattering interference in the renormalized Hubbard model. Front. Phys., 2015, 10(1): 107401 https://doi.org/10.1007/s11467-014-0446-9

References

[1]
A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Impurity-induced states in conventional and unconventional superconductors, Re v . M od. Phy s.78(2), 373 (2006)
CrossRef ADS Google scholar
[2]
O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Scanning tunneling spectroscopy of hightemperature superconductors, Rev. Mod. Phys.79(1), 353 (2007)
CrossRef ADS Google scholar
[3]
T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I. Yamada, M. Azuma, M. Takano, K. Ohishi, M. Ono, and H. Takagi, Quasiparticle interference and superconducting gap in Ca2 -x NaxCuO2Cl2, Nature Physics3(12), 865 (2007)
CrossRef ADS Google scholar
[4]
I. M. Vishik, E. A. Nowadnick, W. S. Lee, Z. X. Shen, B. Moritz, T. P. Devereaux, K. Tanaka, T. Sasagawa, and T. Fujii, A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ, Nature Physics5(10), 718 (2009)
CrossRef ADS Google scholar
[5]
J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ, Science297(5584), 1148 (2002)
CrossRef ADS Google scholar
[6]
K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis, Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ, Nature422(6932), 592 (2003)
CrossRef ADS Google scholar
[7]
Q.-H. Wang and D.-H. Lee, Quasiparticle scattering interference in high-temperature superconductors, Phys. Rev. B67(2), 020511 (2003)
CrossRef ADS Google scholar
[8]
D. Zhang and C. S. Ting, Energy-dependent modulations in the local density of states of the cuprate superconductors, Phys. Rev. B 67(10), 100506 (2003)
CrossRef ADS Google scholar
[9]
L.-Y. Zhu, W. A. Atkinson, and P. J. Hirschfeld, Power spectrum of many impurities in a d-wave superconductor, Phys. Rev. B69(6), 060503 (2004)
CrossRef ADS Google scholar
[10]
T. S. Nunner, W. Chen, B. M. Andersen, A. Melikyan, and P. J. Hirschfeld, Fourier transform spectroscopy of d-wave quasiparticles in the presence of atomic scale pairing disorder, Phys. Rev. B73(10), 104511 (2006)
CrossRef ADS Google scholar
[11]
B. Liu, X. Yan, and F. Yuan, Electron correlation and impurity-induced quasiparticle resonance states in cuprate superconductors, Journal of the Physical Society of Japan82(10), 114713 (2013)
CrossRef ADS Google scholar
[12]
B. Liu, X. Yan, and F. Yuan, Quasiparticle resonance states induced by a nonmagnetic impurity in Gossamer superconductors, Solid State Communications177, 123 (2014)
CrossRef ADS Google scholar
[13]
Z. P. Huang, X. X. Wan, and F. Yuan, Local density of states around two nonmagnetic impurities in cuprate superconductors, Front. Phys.6(3), 309 (2011)
CrossRef ADS Google scholar
[14]
S. P. Feng, Kinetic energy driven superconductivity in doped cuprates, Phys. Rev. B68(18), 184501 (2003)
CrossRef ADS Google scholar
[15]
S. P. Feng, T. X. Ma, and H. M. Guo, Magnetic nature of superconductivity in doped cuprates, Physica C436(1), 14 (2006)
CrossRef ADS Google scholar
[16]
Z. Wang, B. Liu, and S. P. Feng, Extinction of quasiparticle scattering interference in cuprate superconductors, Phys. Lett. A 374(30), 3084 (2010)
CrossRef ADS Google scholar
[17]
M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Rev. Mod. Phys.70(3), 897 (1998)
CrossRef ADS Google scholar
[18]
C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys.72(4), 969 (2000)
CrossRef ADS Google scholar
[19]
H. Ding, M. R. Norman, J. C. Campuzano, M. Randeria, A. F. Bellman, T. Yokoya, T. Takahashi, T. Mochiku, and K. Kadowaki, Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x, Phys. Rev. B54(14), R9678 (1996)
CrossRef ADS Google scholar
[20]
J. L. Talion, C. Bernhard, H. Shaked, R. L. Hitterman, and J. D. Jorgensen, Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7 -δ, Phys. Rev. B51(18), 12911 (1995)
CrossRef ADS Google scholar
[21]
T. Timusk and B. Statt, The pseudogap in high-temperature superconductors: An experimental survey, Rep. Prog. Phys.62(1), 61 (1999)
CrossRef ADS Google scholar
[22]
S. Hüfner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Two gaps make a high-temperature superconductor? Rep. Prog. Phys.71(6), 062501 (2008)
CrossRef ADS Google scholar
[23]
P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science235(4793), 1196 (1987)
CrossRef ADS Google scholar
[24]
G. Baskaran, Z. Zou, and P. W. Anderson, The resonating valence bond state and high-Tc superconductivity — A mean field theory, Solid State Communications63(11), 973 (1987)
CrossRef ADS Google scholar
[25]
F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, A renormalised Hamiltonian approach to a resonant valence bond wavefunction, Supercond. Sci. Technol.1(1), 36 (1988)
CrossRef ADS Google scholar
[26]
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind hightemperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter16(24), R755 (2004)
CrossRef ADS Google scholar
[27]
F. C. Zhang and T. M. Rice, Effective Hamiltonian for the superconducting Cu oxides, Phys. Rev. B37(7), 3759 (1988)
CrossRef ADS Google scholar
[28]
F. C. Zhang, Gossamer superconductor, Mott insulator, and resonating valence bond state in correlated electron systems, Phys. Rev. Lett.90(20), 207002 (2003)
CrossRef ADS Google scholar
[29]
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev.108(5), 1175 (1957)
CrossRef ADS Google scholar
[30]
J. R. Schrieffer, Theory of superconductivity, San Francisco: Addison-Wesley, 1964
[31]
P. A. Lee and X.-G. Wen, Unusual superconducting state of underdoped cuprates, Phys. Rev. Lett.78(21), 4111 (1997)
CrossRef ADS Google scholar
[32]
Mark S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M. Schlüter, Model for low-energy electronic states probed by X-ray absorption in high-Tc cuprates, Phys. Rev. B45(17), 10032 (1992)
CrossRef ADS Google scholar
[33]
A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys.75(2), 473 (2003)
CrossRef ADS Google scholar
[34]
Kai-Yu Yang, C. T. Shih, C. P. Chou, S. M. Huang, T. K. Lee, T. Xiang, and F. C. Zhang, Low-energy physical properties of high-Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments, Phys. Rev. B73(22), 224513 (2006)
CrossRef ADS Google scholar
[35]
H. Ding, J. R. Engelbrecht, Z. Wang, J. C. Campuzano, S.-C. Wang, H.-B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D. G. Hinks, Coherent quasiparticle weight and its connection to high-Tc superconductivity from angle-resolved photoemission, Phys. Rev. Lett.87(22), 227001 (2001)
CrossRef ADS Google scholar
[36]
T. Yoshida, X. J. Zhou, T. Sasagawa, W. L. Yang, P. V. Bogdanov, A. Lanzara, Z. Hussain, T. Mizokawa, A. Fujimori, H. Eisaki, Z.-X. Shen, T. Kakeshita, and S. Uchida, Metallic behavior of lightly doped La2-xSrxCuO4 with a fermi surface forming an arc, Phys. Rev. Lett.91(2), 027001 (2003)
CrossRef ADS Google scholar
[37]
A. C. Durst and P. A. Lee, Impurity-induced quasiparticle transport and universal-limit Wiedemann–Franz violation in d-wave superconductors, Phys. Rev. B62(2), 1270 (2000)
CrossRef ADS Google scholar
[38]
U. Chatterjee, M. Shi, A. Kaminski, A. Kanigel, H. M. Fretwell, K. Terashima, T. Takahashi, S. Rosenkranz, Z. Z. Li, H. Raffy, A. Santander-Syro, K. Kadowaki, M. R. Norman, M. Randeria, and J. C. Campuzano, Nondispersive Fermi arcs and the absence of charge ordering in the pseudogap phase of Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett.96(10), 107006 (2006)
CrossRef ADS Google scholar
[39]
U. Chatterjee, M. Shi, A. Kaminski, A. Kanigel, H. M. Fretwell, K. Terashima, T. Takahashi, S. Rosenkranz, Z. Z. Li, H. Raffy, A. Santander-Syro, K. Kadowaki, M. Randeria, M. R. Norman, and J. C. Campuzano, Anomalous dispersion in the autocorrelation of angle-resolved photoemission spectra of high-temperature Bi2Sr2CaCu2O8+δ superconductors, Phys. Rev. B76(1), 012504 (2007)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(452 KB)

Accesses

Citations

Detail

Sections
Recommended

/