Dimensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle
Yan-Hui Liu, Ying-Bing Chen, Wei Mao, Lin Hu, Lin-Hong Deng, Hou-Qiang Xu
Dimensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle
Recent experiments have pointed out that cellular uptake is strongly dependent on the physical dimensions of endocytosed nanoparticles and the optimal radius of endocytosed virus-like particle coated by transferrin is around 50 nm. As the same time, the dimensions of receptor-ligand complex have strong effects on the size-dependent exclusion of proteins in cell environments. Inspired by these experimental results, a continuum elastic model is constructed to resolve the relationship between the dimensions of receptor-ligand complex and the optimal radius of endocytosed virus-like particle. These results demonstrate that the optimal radius of endocytosed virus-like particle depends on the dimensions of receptor-ligand complex and the dimension of receptor-ligand complex reduces the depletion zone.
cellular uptake / depletion effects / dimension of receptor-ligand complex / elasticity theory
[1] |
A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 2009, 8(7): 543
CrossRef
ADS
Google scholar
|
[2] |
M. Lakadamyali, M. J. Rust, and X. W. Zhuang, Endocytosis of influenza viruses, Microbes Infect., 1996, 6: 334
|
[3] |
S. B. Sieczkarski and G. R. Whittaker, Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis, J. Virol., 2002, 76(20): 10455
CrossRef
ADS
Google scholar
|
[4] |
H. Gao, W. Shi, and L. B. Freund, Mechanics of receptormediated endocytosis, Proc. Natl. Acad. Sci. USA, 2005, 102(27): 9469
CrossRef
ADS
Google scholar
|
[5] |
H. Yuan, J. Li, G. Bao, and S. Zhang, Variable nanoparticlecell adhesion strength regulates cellular uptake, Phys. Rev. Lett., 2010, 105(13): 138101
CrossRef
ADS
Google scholar
|
[6] |
S. X. Sun and D. Wirtz, Mechanics of enveloped virus entry into host cells, Biophys. J., 2006, 90(1): L10
CrossRef
ADS
Google scholar
|
[7] |
B. D. Chithrani and W. C. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes, Nano Lett., 2007, 7(6): 1542
CrossRef
ADS
Google scholar
|
[8] |
B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett., 2006, 6(4): 662
CrossRef
ADS
Google scholar
|
[9] |
J. M. Alakoskela, A. L. Koner, D. Rudnicka, K. Köhler, M. Howarth, and D. M. Davis, Mechanisms for size-dependent protein segregation at immune synapses assessed with molecular rulers, Biophys. J., 2011, 100(12): 2865
CrossRef
ADS
Google scholar
|
[10] |
J. R. James, R. D. Vale, Biophysical mechanism of T-cell receptor triggering in a reconstituted system, Nature, 2012, 487(7405): 64
|
[11] |
P. Nelson and B. Physics, Energy, Information and Life, New York and Basingstoke: W. H. Freeman, 2007
|
[12] |
Z.-C. Ouyang, J.-X. Liu, and Y.-Z. Xie, Geometric methods in the elastic theory of membranes in liquid crystal phase, Singapore: World Scientific, 1999
CrossRef
ADS
Google scholar
|
[13] |
L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Oxford: Pergamon, 1986
|
[14] |
G. I. Bell, Models for the specific adhesion of cells to cells, Science, 1978, 200(4342): 618
CrossRef
ADS
Google scholar
|
[15] |
P. H. Yang, X. Sun, J. F. Chiu, H. Sun, and Q. Y. He, Transferrin-mediated gold nanoparticle cellular uptake, Bioconjugate Chem., 2005, 16(3): 494
CrossRef
ADS
Google scholar
|
[16] |
M. P. Desai, V. Labhasetwar, E. Walter, R. J. Levy, and G. L. Amidon, The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent, Pharm. Res., 1997, 14(11): 1568
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |