Single-electron tunneling and Coulomb blockade in carbon-based quantum dots

Wei FAN (樊巍) , Rui-qin ZHANG (张瑞勤)

Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 315 -326.

PDF (768KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 315 -326. DOI: 10.1007/s11467-009-0023-9
REVIEW ARTICLE

Single-electron tunneling and Coulomb blockade in carbon-based quantum dots

Author information +
History +
PDF (768KB)

Abstract

Single-electron tunneling (SET) and Coulomb blockade (CB) phenomena have been widely observed in nanoscaled electronics and have received intense attention around the world. In the past few years, we have studied SET in carbon nanotube fragments and fullerenes by applying the so-called “Orthodox” theory [28]. As outlined in this review article, we investigated the single-electron charging and discharging process via current-voltage characteristics, gate effect, and electronic structure-related factors. Because the investigated geometric structures are three-dimensionally confined, resulting in a discrete spectrum of energy levels resembling the property of quantum dots, we evidenced the CB and Coulomb staircases in these structures. These nanostructures are sufficiently small that introducing even a single electron is sufficient to dramatically change the transport properties as a result of the charging energy associated with this extra electron. We found that the Coulomb staircases occur in the I-V characteristics only when the width of the left barrier junction is smaller than that of the right barrier junction. In this case, the transmission coefficient of the emitter junction is larger than that of the collector junction; also, occupied levels enter the bias window, thereby enhancing the tunneling extensively.

Keywords

single-electron tunneling (SET) / Coulomb blockade (CB) / Coulomb staircase / carbon nanotube (CNT) / fullerene / Orthodox theory

Cite this article

Download citation ▾
Wei FAN (樊巍), Rui-qin ZHANG (张瑞勤). Single-electron tunneling and Coulomb blockade in carbon-based quantum dots. Front. Phys., 2009, 4(3): 315-326 DOI:10.1007/s11467-009-0023-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Reed, J. N. Randall, R. J. Aggarwall, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett., 1998, 60: 535

[2]

J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antonadis, Phys. Rev. Lett., 1989, 62: 583

[3]

S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett., 1996, 77: 3613

[4]

L. P. Kouwenhoven and P. L. McEuen, in: Nano-Science and Technology, edited by G. Timp, AIP Press, 1997

[5]

M. H. Devoret, D. Esteve, and C. Urbina, Nature, 1992, 360: 547

[6]

R. C. Ashoori, Nature, 1996, 379: 413

[7]

K. Mullen, E. Ben Jacob, R.C. Jaklevic, and Z. Schuss, Phys. Rev. B, 1988, 37: 98

[8]

T. A. Fulton and D. J. Dolan, Phys. Rev. Lett., 1987, 59: 109

[9]

G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49: 57

[10]

C. J. Chen, Introduction to Scanning Tunneling Microscopy, New York: Oxford University Press, 1993

[11]

T.W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London), 1998, 391: 62

[12]

J. G. Hou, J. L. Yang, H. Q. Wang, Q. X. Li, C. G. Zeng, L. F. Yuan, B. Wang, D. M. Chen, and Q. S. Zhu, Nature (London), 2001, 409: 304

[13]

A. E. Hanna and M. Tinkham, Phys. Rev. B, 1991, 44: 5919

[14]

W. H. Green, S. M. Gorun, G. Fitzgerald, P. W. Fowler, A. Ceulemans, and B. C. Teca, J. Chem. Phys., 1996, 100: 14892

[15]

B. Li, C. Zeng, J. Zhao, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys., 2006, 124: 064709

[16]

C. Schönenberger, H. van Houten, and H. C. Donkersloot, Europhys. Lett., 1992, 20: 249

[17]

P. J. M. van Bentum, R. T. M. Smokers, and H. van Kempen, Phys. Rev. Lett., 1988, 60: 2543

[18]

R. Wilkins, E. Ben-Jacob, and R. C. Jaklevic, Phys. Rev. Lett., 1989, 63: 801

[19]

M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger, Phys. Rev. B, 1995, 52: 9071

[20]

D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B, 1997, 56: 9829

[21]

S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Science, 1998, 280: 2098

[22]

U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature (London), 1999, 400: 542

[23]

J. G. Hou, B. Wang, J. L. Yang, X. R. Wang, H. Q. Wang, Q. S. Zhu, and X. D. Xiao, Phys. Rev. Lett., 2001, 86: 5321

[24]

B. Wang, H. Q. Wang, H. X. Li, C. G. Zeng, J. G. Hou, and X. D. Xiao, Phys. Rev. B, 2001, 63: 035403

[25]

S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys. Rev. Lett., 2004, 93: 236802

[26]

W. Fan, R. Q. Zhang, A. R. Rocha, and S. Sanvito, J. Chem. Phys., 2008, 129: 074710

[27]

Z. Z. Sun, X. R. Wang, R. Q. Zhang, and S. T. Lee, J. Appl. Phys., 2008, 103: 103719

[28]

D. V. Averin and K. K. Likharev, J. Low Temp. Phys., 1986, 62: 345

[29]

Y. Q. Feng, R. Q. Zhang, K. S. Chan, H. F. Cheung, and S. T. Lee, Phys. Rev. B, 2002, 66: 045404

[30]

Y. Q. Feng, R. Q. Zhang, and S. T. Lee, J. Appl. Phys., 2004, 95: 5729

[31]

R. Q. Zhang, Y. Q. Feng, S. T. Lee, and C. L. Bai, J. Phys. Chem. B, 2004, 108: 16636

[32]

C. W. J. Beenakker, Phys. Rev. B, 1991, 44: 1646

[33]

D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge, UK: Cambridge University Press, 1997

[34]

A. Selloni, P. Carnevali, E. Tosatti, and C. D. Chen, Phys. Rev. B, 1985, 31: 2602

[35]

H. W. Ch. Postma, M. Jonge, Z. Yao, and C. Dekker, Phys. Rev. B, 2000, 62: R10653

[36]

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Nature (London), 1999, 399: 48

[37]

M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature (London), 1999, 397: 598

[38]

Y. G. Semenov, K. W. Kim, and G. J. Iafrate, Phys. Rev. B, 2007, 75: 045429

[39]

D. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B, 2008, 77: 235301

[40]

J. Wildoer, L. Venema, A. Rinzler, R. Smalley, and C. Dekker, Nature (London), 1998, 391: 59

[41]

A. D. Becke, Phys. Rev. A, 1988, 38: 3098

[42]

C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37: 785

[43]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998

[44]

P. M. Ajayan and S. Iijima, Nature (London), 1992, 358: 23

[45]

H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, New York: Plenum, 1992

[46]

D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, Phys. Rev. Lett., 1998, 81: 681

[47]

J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Nanotechnology, 2001, 12: 160

[48]

A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett., 1992, 69: 1592

[49]

M. A. Kastner, Rev. Mod. Phys., 1992, 64:849

[50]

E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk, N. R. Belk, and M. A. Kastner, Phys. Rev. B, 1993, 47: 10020

[51]

G. E. Scuseria, Science, 1996, 271: 942

[52]

H. Kietzmann, R. Rochow, G. Gantefoer, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler, Phys. Rev. Lett., 1998, 81: 5378

[53]

H. Prinzback, A. Weller, P. Landenberger, F. Wahl, J. Woerth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff, Nature, 2000, 407: 60

[54]

H. W. Kroto, Nature, 1987, 329: 529

[55]

B. Wang, Y. Zhou, X. Ding, K. Wang, X. Wang, J. Yang, and J. G. Hou, J. Phys. Chem. B, 2006, 110: 24505

[56]

J. Zhao, C. Zeng, X. Cheng, K. Wang, G. Wang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett., 2005, 95: 045502

[57]

H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature, 2000, 407: 57

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (768KB)

1184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/