Single-electron tunneling and Coulomb blockade in carbon-based quantum dots

,

PDF(768 KB)
PDF(768 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 315-326. DOI: 10.1007/s11467-009-0023-9
REVIEW ARTICLE
REVIEW ARTICLE

Single-electron tunneling and Coulomb blockade in carbon-based quantum dots

  • 1,2
  • 1,3
Author information +
History +

Abstract

Single-electron tunneling (SET) and Coulomb blockade (CB) phenomena have been widely observed in nanoscaled electronics and have received intense attention around the world. In the past few years, we have studied SET in carbon nanotube fragments and fullerenes by applying the so-called “Orthodox” theory [28]. As outlined in this review article, we investigated the single-electron charging and discharging process via current-voltage characteristics, gate effect, and electronic structure-related factors. Because the investigated geometric structures are three-dimensionally confined, resulting in a discrete spectrum of energy levels resembling the property of quantum dots, we evidenced the CB and Coulomb staircases in these structures. These nanostructures are sufficiently small that introducing even a single electron is sufficient to dramatically change the transport properties as a result of the charging energy associated with this extra electron. We found that the Coulomb staircases occur in the I-V characteristics only when the width of the left barrier junction is smaller than that of the right barrier junction. In this case, the transmission coefficient of the emitter junction is larger than that of the collector junction; also, occupied levels enter the bias window, thereby enhancing the tunneling extensively.

Keywords

single-electron tunneling (SET) / Coulomb blockade (CB) / Coulomb staircase / carbon nanotube (CNT) / fullerene / Orthodox theory

Cite this article

Download citation ▾
, . Single-electron tunneling and Coulomb blockade in carbon-based quantum dots. Front. Phys., 2009, 4(3): 315‒326 https://doi.org/10.1007/s11467-009-0023-9

References

[1]
M. A. Reed, J. N. Randall, R. J. Aggarwall, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett., 1998, 60: 535
CrossRef ADS Google scholar
[2]
J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antonadis, Phys. Rev. Lett., 1989, 62: 583
CrossRef ADS Google scholar
[3]
S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett., 1996, 77: 3613
CrossRef ADS Google scholar
[4]
L. P. Kouwenhoven and P. L. McEuen, in: Nano-Science and Technology, edited by G. Timp, AIP Press, 1997
[5]
M. H. Devoret, D. Esteve, and C. Urbina, Nature, 1992, 360: 547
CrossRef ADS Google scholar
[6]
R. C. Ashoori, Nature, 1996, 379: 413
CrossRef ADS Google scholar
[7]
K. Mullen, E. Ben Jacob, R.C. Jaklevic, and Z. Schuss, Phys. Rev. B, 1988, 37: 98
CrossRef ADS Google scholar
[8]
T. A. Fulton and D. J. Dolan, Phys. Rev. Lett., 1987, 59: 109
CrossRef ADS Google scholar
[9]
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49: 57
CrossRef ADS Google scholar
[10]
C. J. Chen, Introduction to Scanning Tunneling Microscopy, New York: Oxford University Press, 1993
[11]
T.W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London), 1998, 391: 62
CrossRef ADS Google scholar
[12]
J. G. Hou, J. L. Yang, H. Q. Wang, Q. X. Li, C. G. Zeng, L. F. Yuan, B. Wang, D. M. Chen, and Q. S. Zhu, Nature (London), 2001, 409: 304
CrossRef ADS Google scholar
[13]
A. E. Hanna and M. Tinkham, Phys. Rev. B, 1991, 44: 5919
CrossRef ADS Google scholar
[14]
W. H. Green, S. M. Gorun, G. Fitzgerald, P. W. Fowler, A. Ceulemans, and B. C. Teca, J. Chem. Phys., 1996, 100: 14892
CrossRef ADS Google scholar
[15]
B. Li, C. Zeng, J. Zhao, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys., 2006, 124: 064709
CrossRef ADS Google scholar
[16]
C. Schönenberger, H. van Houten, and H. C. Donkersloot, Europhys. Lett., 1992, 20: 249
CrossRef ADS Google scholar
[17]
P. J. M. van Bentum, R. T. M. Smokers, and H. van Kempen, Phys. Rev. Lett., 1988, 60: 2543
CrossRef ADS Google scholar
[18]
R. Wilkins, E. Ben-Jacob, and R. C. Jaklevic, Phys. Rev. Lett., 1989, 63: 801
CrossRef ADS Google scholar
[19]
M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger, Phys. Rev. B, 1995, 52: 9071
CrossRef ADS Google scholar
[20]
D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B, 1997, 56: 9829
CrossRef ADS Google scholar
[21]
S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Science, 1998, 280: 2098
CrossRef ADS Google scholar
[22]
U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature (London), 1999, 400: 542
CrossRef ADS Google scholar
[23]
J. G. Hou, B. Wang, J. L. Yang, X. R. Wang, H. Q. Wang, Q. S. Zhu, and X. D. Xiao, Phys. Rev. Lett., 2001, 86: 5321
CrossRef ADS Google scholar
[24]
B. Wang, H. Q. Wang, H. X. Li, C. G. Zeng, J. G. Hou, and X. D. Xiao, Phys. Rev. B, 2001, 63: 035403
CrossRef ADS Google scholar
[25]
S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys. Rev. Lett., 2004, 93: 236802
CrossRef ADS Google scholar
[26]
W. Fan, R. Q. Zhang, A. R. Rocha, and S. Sanvito, J. Chem. Phys., 2008, 129: 074710
CrossRef ADS Google scholar
[27]
Z. Z. Sun, X. R. Wang, R. Q. Zhang, and S. T. Lee, J. Appl. Phys., 2008, 103: 103719
CrossRef ADS Google scholar
[28]
D. V. Averin and K. K. Likharev, J. Low Temp. Phys., 1986, 62: 345
CrossRef ADS Google scholar
[29]
Y. Q. Feng, R. Q. Zhang, K. S. Chan, H. F. Cheung, and S. T. Lee, Phys. Rev. B, 2002, 66: 045404
CrossRef ADS Google scholar
[30]
Y. Q. Feng, R. Q. Zhang, and S. T. Lee, J. Appl. Phys., 2004, 95: 5729
CrossRef ADS Google scholar
[31]
R. Q. Zhang, Y. Q. Feng, S. T. Lee, and C. L. Bai, J. Phys. Chem. B, 2004, 108: 16636
CrossRef ADS Google scholar
[32]
C. W. J. Beenakker, Phys. Rev. B, 1991, 44: 1646
CrossRef ADS Google scholar
[33]
D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge, UK: Cambridge University Press, 1997
[34]
A. Selloni, P. Carnevali, E. Tosatti, and C. D. Chen, Phys. Rev. B, 1985, 31: 2602
CrossRef ADS Google scholar
[35]
H. W. Ch. Postma, M. Jonge, Z. Yao, and C. Dekker, Phys. Rev. B, 2000, 62: R10653
CrossRef ADS Google scholar
[36]
J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Nature (London), 1999, 399: 48
CrossRef ADS Google scholar
[37]
M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature (London), 1999, 397: 598
CrossRef ADS Google scholar
[38]
Y. G. Semenov, K. W. Kim, and G. J. Iafrate, Phys. Rev. B, 2007, 75: 045429
CrossRef ADS Google scholar
[39]
D. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B, 2008, 77: 235301
CrossRef ADS Google scholar
[40]
J. Wildoer, L. Venema, A. Rinzler, R. Smalley, and C. Dekker, Nature (London), 1998, 391: 59
CrossRef ADS Google scholar
[41]
A. D. Becke, Phys. Rev. A, 1988, 38: 3098
CrossRef ADS Google scholar
[42]
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1988, 37: 785
CrossRef ADS Google scholar
[43]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998
[44]
P. M. Ajayan and S. Iijima, Nature (London), 1992, 358: 23
CrossRef ADS Google scholar
[45]
H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, New York: Plenum, 1992
[46]
D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, Phys. Rev. Lett., 1998, 81: 681
CrossRef ADS Google scholar
[47]
J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Nanotechnology, 2001, 12: 160
CrossRef ADS Google scholar
[48]
A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett., 1992, 69: 1592
CrossRef ADS Google scholar
[49]
M. A. Kastner, Rev. Mod. Phys., 1992, 64:849
CrossRef ADS Google scholar
[50]
E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk, N. R. Belk, and M. A. Kastner, Phys. Rev. B, 1993, 47: 10020
CrossRef ADS Google scholar
[51]
G. E. Scuseria, Science, 1996, 271: 942
CrossRef ADS Google scholar
[52]
H. Kietzmann, R. Rochow, G. Gantefoer, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler, Phys. Rev. Lett., 1998, 81: 5378
CrossRef ADS Google scholar
[53]
H. Prinzback, A. Weller, P. Landenberger, F. Wahl, J. Woerth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff, Nature, 2000, 407: 60
CrossRef ADS Google scholar
[54]
H. W. Kroto, Nature, 1987, 329: 529
CrossRef ADS Google scholar
[55]
B. Wang, Y. Zhou, X. Ding, K. Wang, X. Wang, J. Yang, and J. G. Hou, J. Phys. Chem. B, 2006, 110: 24505
CrossRef ADS Google scholar
[56]
J. Zhao, C. Zeng, X. Cheng, K. Wang, G. Wang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett., 2005, 95: 045502
CrossRef ADS Google scholar
[57]
H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature, 2000, 407: 57
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(768 KB)

Accesses

Citations

Detail

Sections
Recommended

/