The preparation of large-scale Cu‒Al‒Ni shape memory alloys with excellent microstructure and texture is a significant challenge in this field. In this study, large-scale Cu‒Al‒Ni shape memory alloy (SMA) slabs with good surface quality and strong orientation were prepared by the horizontal continuous casting (HCC). The microstructure and mechanical properties were compared with the ordinary casting (OC) Cu‒Al‒Ni alloy. The results showed that the microstructure of OC Cu‒Al‒Ni alloy was equiaxed grains with randomly orientation, which had no obvious superelasticity. The alloys produced by HCC had herringbone grains with strong orientation near〈1 0 0〉and the cumulative tensile superelasticity of 4.58%. The superelasticity of the alloy produced by HCC has been improved by 4‒5 times. This work has preliminarily realized the production of large-scale Cu‒Al‒Ni SMA slab with good superelasticity, which lays a foundation for expanding the industrial production and application of Cu-based SMAs.
Herein, the rational design micromilieus involved silk fibroin (SF)-based materials have been used to encapsulate the osteoblasts, forming an extracellular coated shell on the cells, which exhibited the high potential to shift the regulation of osteoblasts to osteocytes by encapsulation cues. SF coating treated cells showed a change in cell morphology from osteoblasts-like to osteocytes-like shape compared with untreated ones. Moreover, the expression of alkaline phosphatase (ALP), collagen I (Col I) and osteocalcin (OCN) further indicated a potential approach for inducing osteoblasts regulation, which typically accelerates calcium deposition and cell calcification, presenting a key role for the SF encapsulation in controlling osteoblasts behavior. This discovery showed that SF-based cell encapsulation could be used for osteoblasts behavior regulation, which offers a great potential to modulate mammalian cells’ phenotype involving alternating surrounding cues.
Superamphiphobic surfaces have attracted the attention of researchers because of their broad application prospects. Currently, superamphiphobicity is primarily achieved by minimizing the solid–liquid contact area. Over the past few decades, researchers have primarily focused on using physical deposition methods to construct superamphiphobic surfaces using fine-sized nanoparticles (< 100 nm). However, porous hollow SiO2 particles (PH-SiO2), which are typically large spheres, have a highly hierarchical structure and can provide lower solid–liquid contact fractions than those provided by fine-sized particles. In this study, we used PH-SiO2 as building blocks and combined them with poly (dimethylsiloxane) to construct a mechanically robust coating on fiber by spray-coating. After chemical vapor deposition treatment, the coating exhibited excellent superamphiphobicity and could repel various liquids, covering a wide range of surface tensions (27.4–72.0 mN·m−1).
As a kind of essential hydrated salt phase change energy storage materials, mirabilite with high energy storage density and mild phase-transition temperature has excellent application potential in the problems of solar time and space mismatch. However, there are some disadvantages such as supercooling, substantial phase stratification and leakage problem, limiting its further applications. In this work, for the preparation of shaped mirabilite phase change materials (MPCMs), graphene (GO), sodium carboxymethyl cellulose (CMC), and carbon nanofibers (CNFs) were used as starting materials to prepare lightweight CMC/rGO/CNFs carbon aerogel (CGCA) as support with stable shape, high specific surface area, and well-arranged hierarchically porous structure. The results show that CGCA has regular layered plentiful pores and stable foam structure, and the pore and sheet interspersed structure in CGCA stabilizes PCMs via capillary force and surface tension. The hydrophilic aerogels supported MPCMs decrease mirabilite leaking and reduce supercooling to around 0.7‒1 °C. The latent heats of melting and crystallization of CGCA-supported mirabilite phase change materials (CGCA-PCMs) are 157.1 and 114.8 J·g−1, respectively. Furthermore, after 1500 solid‒liquid cycles, there is no leakage, and the retention rate of crystallization latent heat is 45.32%, exhibiting remarkable thermal cycling stability.
As an excellent room temperature sensing material, polyaniline (PANI) needs to be further investigated in the field of high sensitivity and sustainable gas sensors due to its long recovery time and difficulty to complete recovery. The ZnO/PANI film with p‒n heterogeneous energy levels have successfully prepared by spraying ZnO nanorod synthesized by hydrothermal method on the PANI film rapidly synthesized at the gas‒liquid interface. The presence of p‒n heterogeneous energy levels enables the ZnO/PANI film to detect 0.1‒100 ppm (1 ppm = 10−6) NH3 at room temperature with the response value to 100 ppm NH3 doubled (12.96) and the recovery time shortened to 1/5 (31.2 s). The ability of high response and fast recovery makes the ZnO/PANI film to be able to detect NH3 at room temperature continuously. It provides a new idea for PANI to prepare sustainable room temperature sensor and promotes the development of room temperature sensor in public safety.
Anodic aluminum oxide (AAO) with independently controlled period, porosity, and height is used as the model surface to study the single structural parameter effect on breast cancer cell behaviors, including cell polarity and cell viability. It is found that the quantity of multipolar cells and cell viability increases as the nanodent period increases from 100 to 300 nm, while the number of bipolar cells has almost no change until there is a dramatic decrease as the period increases to 300 nm. After anodizing nanodents into nanopores, the numbers of both bipolar cells and the cell viability increase significantly with the porosity increase. However, as the porosity further increases and the nanopore changes into a nanocone pillar, most of the cells become nonpolar spheres and the cell viability decreases. Increasing the height of the nanocone pillar has little effect on the cell polarity; the cell viability increases slightly with the increase of the nanocone pillar height. These results reveal the influence of individual nanostructure parameters on the cell behavior, especially the cell polarity and the cell viability, which can help to design the surface to make the cell grow as desired.
ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment. However, its photocatalytic efficiency and surface stability limit further applicability. This paper uses a one-step carbonization method to prepare multifunctional ZnO/carbon hybrid nanofiber mats. The carbonization creates a π-conjugated carbonaceous structure of the mats, which prolongs the electron recovery time of ZnO nanoparticles to yield improved photocatalytic efficiency. Further, the carbonization reduces the fiber diameter of the carbon hybrid nanofiber mats, which quadruples the specific surface area to yield enhanced adsorption and photocatalytic performance. At the same time, the prepared nanofiber mats can increase the evaporation rate of water under solar irradiation to a level of 1.46 kg·m−2·h−1 with an efficiency of 91.9%. Thus, the nanofiber mats allow the facile incorporation of photocatalysts to clean contaminated water through adsorption, photodegradation, and interfacial heat-assisted distillation mechanisms.
The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li2NiO2, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li2NiO2 and thus greatly reduces the voltage hysteresis of the NiO anode from ~1.2 to ~0.9 V. In comparison with the pure NiO electrode, the Ni0.5Fe0.5O1−xNx anode exhibits significantly enhanced reversible specific capacity (959 mAh·g−1 at 0.3 A·g−1), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g−1). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.
Efficient chemical warfare agents (CWAs) detection is required to protect people from the CWAs in war and terrorism. In this work, a Pd-doped SnO2 nanoparticles-based gas sensor was developed to detect a nerve agent simulant named methyl salicylate. The sensing measurements of methyl salicylate under different Pd doping amounts found that the 0.5 at.% Pd-doped SnO2 exhibited a significant improvement in the detection of methyl salicylate at the ppb (1 ppb = 10−9) level, and the response value to 160 ppb methyl salicylate is 0.72 at 250 °C. Compared with the pure SnO2, the response value is increased by 4.5 times, which could be attributed to the influence of the noble metal Pd on the oxygen state and its catalytic effect. In addition, the 0.5 at.% Pd-doped SnO2 sensor still has an obvious response to 16 ppb methyl salicylate with a response value of 0.13, indicating the lower detection limit of the sensor.
In recent years, superhydrophobic coatings have received extensive attention due to their functions of waterproof, antifouling, self-cleaning, etc. However, wide applications of superhydrophobic coatings are still affected by their disadvantages of complex preparation, low mechanical properties, and poor ultraviolet (UV) resistance. In this study, cellulose nanocrystal containing a small amount of lignin (L-CNC)/SiO2 composite particles were used as the main material, polydimethylsiloxane (PDMS) as the adhesive and perfluorooctyltrichlorosilane (FOTS) as the modifier to prepare superhydrophobic coatings by a one-step spray method. The resulted coating showed excellent superhydrophobicity (water contact angle (WCA) of 161° and slide angle (SA) of 7°) and high abrasion resistance (capable of withstanding 50 abrasion cycles under the load of 50 g). Moreover, it still maintained good superhydrophobicity after 5 h of exposure to the UV light (1000 W), displaying its good UV resistance. This study provides theoretical and technical reference for the simple preparation of organic‒inorganic composite superhydrophobic coatings with high abrasion resistance and good UV resistance, which is beneficial to improving the practicability and broadening the application scope of superhydrophobic coatings.