Collections

Microresonators for Photonic Applications and Beyond
Publication years
Loading ...
Article types
Loading ...
  • Select all
  • RESEARCH ARTICLE
    Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao
    Frontiers of Optoelectronics, 2024, 17(2): 12. https://doi.org/10.1007/s12200-024-00115-5

    Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as – 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.

  • REVIEW ARTICLE
    Yanran Wu, Bing Duan, Changhong Li, Daquan Yang
    Frontiers of Optoelectronics, 2023, 16(3): 29. https://doi.org/10.1007/s12200-023-00084-1

    Optical microcavities have the ability to confine photons in small mode volumes for long periods of time, greatly enhancing light-matter interactions, and have become one of the research hotspots in international academia. In recent years, sensing applications in complex environments have inspired the development of multimode optical microcavity sensors. These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision. In this review, we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors. Expected further research activities are also put forward.

  • RESEARCH ARTICLE
    Yuqi Hu, Qingsong Bai, Xi Tang, Wei Xiong, Yilu Wu, Xin Zhang, Yanlan Xiao, Runchang Du, Leiji Liu, Guangqiong Xia, Zhengmao Wu, Junbo Yang, Heng Zhou, Jiagui Wu
    Frontiers of Optoelectronics, 2023, 16(3): 24. https://doi.org/10.1007/s12200-023-00081-4

    Ultrafast physical random bit (PRB) generators and integrated schemes have proven to be valuable in a broad range of scientific and technological applications. In this study, we experimentally demonstrated a PRB scheme with a chaotic microcomb using a chip-scale integrated resonator. A microcomb contained hundreds of chaotic channels, and each comb tooth functioned as an entropy source for the PRB. First, a 12 Gbits/s PRB signal was obtained for each tooth channel with proper post-processing and passed the NIST Special Publication 800-22 statistical tests. The chaotic microcomb covered a wavelength range from 1430 to 1675 nm with a free spectral range (FSR) of 100 GHz. Consequently, the combined random bit sequence could achieve an ultra-high rate of about 4 Tbits/s (12 Gbits/s × 294 = 3.528 Tbits/s), with 294 teeth in the experimental microcomb. Additionally, denser microcombs were experimentally realized using an integrated resonator with 33.6 GHz FSR. A total of 805 chaotic comb teeth were observed and covered the wavelength range from 1430 to 1670 nm. In each tooth channel, 12 Gbits/s random sequences was generated, which passed the NIST test. Consequently, the total rate of the PRB was approximately 10 Tbits/s (12 Gbits/s × 805 = 9.66 Tbits/s). These results could offer potential chip solutions of Pbits/s PRB with the features of low cost and a high degree of parallelism.

  • REVIEW ARTICLE
    Pengfei Liu, Hao Wen, Linhao Ren, Lei Shi, Xinliang Zhang
    Frontiers of Optoelectronics, 2023, 16(3): 18. https://doi.org/10.1007/s12200-023-00073-4

    Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.

  • RESEARCH ARTICLE
    Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu
    Frontiers of Optoelectronics, 2022, 15(4): 48. https://doi.org/10.1007/s12200-022-00047-y

    Optical Kerr solitons generation based on microresonators is essential in nonlinear optics. Among various soliton generation processes, the single soliton generation plays a pivotal role since it ensures rigorous mode-locking on each comb line whose interval equals the free spectral range (FSR) of the microresonator. Current studies show that single soliton generation is challenging due to cavity instability. Here, we propose a new method to greatly improve single soliton generation probalility in the anomalous group velocity dispersion (GVD) regime in a micro-ring resonator based on silicon nitride. The improvement is realized by introducing mode depletion through an integrated coupled filter. It is convenient to introduce controllable single mode depletion in a micro-ring resonator by adjusting the response function of a coupled filter. We show that spectral mode depletion (SMD) can significantly boost the single soliton generation probability. The effect of SMD on the dynamics of optical Kerr solitons generation are also discussed. The proposed method offers a straightforward and simple way to facilitate robust single soliton generation, and will have an impact on the research development in optical Kerr soliton generation and on-chip optical frequency mode manipulation.