Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion

Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu

PDF(3599 KB)
PDF(3599 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (4) : 48. DOI: 10.1007/s12200-022-00047-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion

Author information +
History +

Abstract

Optical Kerr solitons generation based on microresonators is essential in nonlinear optics. Among various soliton generation processes, the single soliton generation plays a pivotal role since it ensures rigorous mode-locking on each comb line whose interval equals the free spectral range (FSR) of the microresonator. Current studies show that single soliton generation is challenging due to cavity instability. Here, we propose a new method to greatly improve single soliton generation probalility in the anomalous group velocity dispersion (GVD) regime in a micro-ring resonator based on silicon nitride. The improvement is realized by introducing mode depletion through an integrated coupled filter. It is convenient to introduce controllable single mode depletion in a micro-ring resonator by adjusting the response function of a coupled filter. We show that spectral mode depletion (SMD) can significantly boost the single soliton generation probability. The effect of SMD on the dynamics of optical Kerr solitons generation are also discussed. The proposed method offers a straightforward and simple way to facilitate robust single soliton generation, and will have an impact on the research development in optical Kerr soliton generation and on-chip optical frequency mode manipulation.

Graphical abstract

Keywords

Kerr soliton / Single soliton generation / Spectral filtering

Cite this article

Download citation ▾
Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu. Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion. Front. Optoelectron., 2022, 15(4): 48 https://doi.org/10.1007/s12200-022-00047-y

References

[1]
Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)
CrossRef Google scholar
[2]
Pasquazi, A., Peccianti, M., Razzari, L., Moss, D.J., Coen, S., Erkintalo, M., Chembo, Y.K., Hansson, T., Wabnitz, S., Del’Haye, P., Xue, X., Weiner, A.M., Morandotti, R.: Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018)
CrossRef Google scholar
[3]
Coddington, I., Newbury, N., Swann, W.: Dual-comb spectros-copy. Optica 3(4), 414–426 (2016)
CrossRef Google scholar
[4]
Suh, M.G., Yang, Q.F., Yang, K.Y., Yi, X., Vahala, K.J.: Micro-resonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)
CrossRef Google scholar
[5]
Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Microresonator-based high-resolution gas spectroscopy. Opt. Lett. 42(21), 4442–4445 (2017)
CrossRef Google scholar
[6]
Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optica 1(1), 10–14 (2014)
CrossRef Google scholar
[7]
Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274–279 (2017)
CrossRef Google scholar
[8]
Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)
CrossRef Google scholar
[9]
Suh, M.G., Vahala, K.J.: Soliton microcomb range measurement. Science 359(6378), 884–887 (2018)
CrossRef Google scholar
[10]
Wang, W., Wang, L., Zhang, W.: Advances in soliton micro-comb generation. Adv. Photonics 2(3), 034001(2020)
CrossRef Google scholar
[11]
Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)
CrossRef Google scholar
[12]
Bao, C., Xuan, Y., Leaird, D.E., Wabnitz, S., Qi, M., Weiner, A.M.: Spatial mode-interaction induced single soliton generation in microresonators. Optica 4(9), 1011(2017)
CrossRef Google scholar
[13]
Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901(2014)
CrossRef Google scholar
[14]
Zhou, H., Geng, Y., Cui, W., Huang, S.W., Zhou, Q., Qiu, K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50(2019)
CrossRef Google scholar
[15]
Liao, M., Zhou, H., Geng, Y., Ling, Y., Wu, B., Qiu, K.: Enhanced single cavity soliton generation in Kerr microresonators via inverse-Kelly sideband. IEEE Photonics J. 9(3), 1–9 (2017)
CrossRef Google scholar
[16]
Xue, X., Zheng, Z., Zhou, B.: Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling. Photonics Res. 6(10), 948–953 (2018)
CrossRef Google scholar
[17]
Pan, J., Cheng, Z., Huang, T., Song, C., Shum, P.P., Brambilla, G.: Fundamental and third harmonic mode coupling induced single soliton generation in Kerr microresonators. J. Lightwave Technol. 37(21), 5531–5536 (2019)
CrossRef Google scholar
[18]
Perego, A.M., Turitsyn, S.K., Staliunas, K.: Gain through losses in nonlinear optics. Light Sci. Appl. 7(1), 43(2018)
CrossRef Google scholar
[19]
Perego, A.M., Mussot, A., Conforti, M.: Theory of filter-induced modulation instability in driven passive optical resonators. Phys. Rev. A (Coll. Park) 103(1), 013522(2021)
CrossRef Google scholar
[20]
Bessin, F., Perego, A.M., Staliunas, K., Turitsyn, S.K., Kudlinski, A., Conforti, M., Mussot, A.: Gain-through-filtering enables tuneable frequency comb generation in passive optical resonators. Nat. Commun. 10(1), 4489(2019)
CrossRef Google scholar
[21]
Bechhoefer, J.: Kramers-Kronig, Bode, and the meaning of zero. Am. J. Phys. 79(10), 1053–1059 (2011)
CrossRef Google scholar
[22]
Lucarini, V., Peiponen, K., Saarinen, J.J., Vartiainen, E.M.: Kramers- Kronig relations in optical materials research. Springer, Berlin (2005)
[23]
Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)
CrossRef Google scholar
[24]
Wang, Y., Leo, F., Fatome, J., Erkintalo, M., Murdoch, S.G., Coen, S.: Universal mechanism for the binding of temporal cavity solitons. Optica 4(8), 855–863 (2017)
CrossRef Google scholar
[25]
Tikan, A., Riemensberger, J., Komagata, K., Hönl, S., Churaev, M., Skehan, C., Guo, H., Wang, R.N., Liu, J., Seidler, P., Kippenberg, T.J.: Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 17(5), 604–610 (2021)
CrossRef Google scholar
[26]
Guo, X., Zou, C.L., Jiang, L., Tang, H.X.: All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys. Rev. Lett. 120(20), 203902(2018)
CrossRef Google scholar
[27]
Wang, S., Wang, Q., Wang, W., Wang, X., Yu, M., Fang, Q., Cai, Y.: Pump condition dependent Kerr frequency comb generation in mid-infrared. Results Phys. 15, 102789(2019)
CrossRef Google scholar
[28]
Carmon, T., Yang, L., Vahala, K.: Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12(20), 4742–4750 (2004)
CrossRef Google scholar
[29]
Jiang, X., Yang, L.: Optothermal dynamics in whispering-gallery microresonators. Light Sci. Appl. 9(1), 24(2020)
CrossRef Google scholar
[30]
Godey, C., Balakireva, I.V., Coillet, A., Chembo, Y.K.: Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89(6), 063814(2014)
CrossRef Google scholar
[31]
Chen, N., Zhang, B., Yang, H., Lu, X., He, S., Hu, Y., Chen, Y., Zhang, X., Xu, J.: Stability analysis of generalized Lugiato-Lefever equation with lumped filter for Kerr optical soliton generation in anomalous dispersion regime. In: Proceedings of Asian Communication and Photonics Conference (ACP 2021). Shanghai: IEEE, pp. T4A.187 (2022)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(3599 KB)

Accesses

Citations

Detail

Sections
Recommended

/