Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion
Boqing Zhang, Nuo Chen, Xinda Lu, Yuntian Chen, Xinliang Zhang, Jing Xu
Dissipative Kerr single soliton generation with extremely high probability via spectral mode depletion
Optical Kerr solitons generation based on microresonators is essential in nonlinear optics. Among various soliton generation processes, the single soliton generation plays a pivotal role since it ensures rigorous mode-locking on each comb line whose interval equals the free spectral range (FSR) of the microresonator. Current studies show that single soliton generation is challenging due to cavity instability. Here, we propose a new method to greatly improve single soliton generation probalility in the anomalous group velocity dispersion (GVD) regime in a micro-ring resonator based on silicon nitride. The improvement is realized by introducing mode depletion through an integrated coupled filter. It is convenient to introduce controllable single mode depletion in a micro-ring resonator by adjusting the response function of a coupled filter. We show that spectral mode depletion (SMD) can significantly boost the single soliton generation probability. The effect of SMD on the dynamics of optical Kerr solitons generation are also discussed. The proposed method offers a straightforward and simple way to facilitate robust single soliton generation, and will have an impact on the research development in optical Kerr soliton generation and on-chip optical frequency mode manipulation.
Kerr soliton / Single soliton generation / Spectral filtering
[1] |
Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361(6402), eaan8083 (2018)
CrossRef
Google scholar
|
[2] |
Pasquazi, A., Peccianti, M., Razzari, L., Moss, D.J., Coen, S., Erkintalo, M., Chembo, Y.K., Hansson, T., Wabnitz, S., Del’Haye, P., Xue, X., Weiner, A.M., Morandotti, R.: Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018)
CrossRef
Google scholar
|
[3] |
Coddington, I., Newbury, N., Swann, W.: Dual-comb spectros-copy. Optica 3(4), 414–426 (2016)
CrossRef
Google scholar
|
[4] |
Suh, M.G., Yang, Q.F., Yang, K.Y., Yi, X., Vahala, K.J.: Micro-resonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)
CrossRef
Google scholar
|
[5] |
Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Microresonator-based high-resolution gas spectroscopy. Opt. Lett. 42(21), 4442–4445 (2017)
CrossRef
Google scholar
|
[6] |
Papp, S.B., Beha, K., Del’Haye, P., Quinlan, F., Lee, H., Vahala, K.J., Diddams, S.A.: Microresonator frequency comb optical clock. Optica 1(1), 10–14 (2014)
CrossRef
Google scholar
|
[7] |
Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274–279 (2017)
CrossRef
Google scholar
|
[8] |
Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)
CrossRef
Google scholar
|
[9] |
Suh, M.G., Vahala, K.J.: Soliton microcomb range measurement. Science 359(6378), 884–887 (2018)
CrossRef
Google scholar
|
[10] |
Wang, W., Wang, L., Zhang, W.: Advances in soliton micro-comb generation. Adv. Photonics 2(3), 034001(2020)
CrossRef
Google scholar
|
[11] |
Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13(1), 94–102 (2017)
CrossRef
Google scholar
|
[12] |
Bao, C., Xuan, Y., Leaird, D.E., Wabnitz, S., Qi, M., Weiner, A.M.: Spatial mode-interaction induced single soliton generation in microresonators. Optica 4(9), 1011(2017)
CrossRef
Google scholar
|
[13] |
Herr, T., Brasch, V., Jost, J.D., Mirgorodskiy, I., Lihachev, G., Gorodetsky, M.L., Kippenberg, T.J.: Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113(12), 123901(2014)
CrossRef
Google scholar
|
[14] |
Zhou, H., Geng, Y., Cui, W., Huang, S.W., Zhou, Q., Qiu, K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50(2019)
CrossRef
Google scholar
|
[15] |
Liao, M., Zhou, H., Geng, Y., Ling, Y., Wu, B., Qiu, K.: Enhanced single cavity soliton generation in Kerr microresonators via inverse-Kelly sideband. IEEE Photonics J. 9(3), 1–9 (2017)
CrossRef
Google scholar
|
[16] |
Xue, X., Zheng, Z., Zhou, B.: Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling. Photonics Res. 6(10), 948–953 (2018)
CrossRef
Google scholar
|
[17] |
Pan, J., Cheng, Z., Huang, T., Song, C., Shum, P.P., Brambilla, G.: Fundamental and third harmonic mode coupling induced single soliton generation in Kerr microresonators. J. Lightwave Technol. 37(21), 5531–5536 (2019)
CrossRef
Google scholar
|
[18] |
Perego, A.M., Turitsyn, S.K., Staliunas, K.: Gain through losses in nonlinear optics. Light Sci. Appl. 7(1), 43(2018)
CrossRef
Google scholar
|
[19] |
Perego, A.M., Mussot, A., Conforti, M.: Theory of filter-induced modulation instability in driven passive optical resonators. Phys. Rev. A (Coll. Park) 103(1), 013522(2021)
CrossRef
Google scholar
|
[20] |
Bessin, F., Perego, A.M., Staliunas, K., Turitsyn, S.K., Kudlinski, A., Conforti, M., Mussot, A.: Gain-through-filtering enables tuneable frequency comb generation in passive optical resonators. Nat. Commun. 10(1), 4489(2019)
CrossRef
Google scholar
|
[21] |
Bechhoefer, J.: Kramers-Kronig, Bode, and the meaning of zero. Am. J. Phys. 79(10), 1053–1059 (2011)
CrossRef
Google scholar
|
[22] |
Lucarini, V., Peiponen, K., Saarinen, J.J., Vartiainen, E.M.: Kramers- Kronig relations in optical materials research. Springer, Berlin (2005)
|
[23] |
Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)
CrossRef
Google scholar
|
[24] |
Wang, Y., Leo, F., Fatome, J., Erkintalo, M., Murdoch, S.G., Coen, S.: Universal mechanism for the binding of temporal cavity solitons. Optica 4(8), 855–863 (2017)
CrossRef
Google scholar
|
[25] |
Tikan, A., Riemensberger, J., Komagata, K., Hönl, S., Churaev, M., Skehan, C., Guo, H., Wang, R.N., Liu, J., Seidler, P., Kippenberg, T.J.: Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 17(5), 604–610 (2021)
CrossRef
Google scholar
|
[26] |
Guo, X., Zou, C.L., Jiang, L., Tang, H.X.: All-optical control of linear and nonlinear energy transfer via the Zeno effect. Phys. Rev. Lett. 120(20), 203902(2018)
CrossRef
Google scholar
|
[27] |
Wang, S., Wang, Q., Wang, W., Wang, X., Yu, M., Fang, Q., Cai, Y.: Pump condition dependent Kerr frequency comb generation in mid-infrared. Results Phys. 15, 102789(2019)
CrossRef
Google scholar
|
[28] |
Carmon, T., Yang, L., Vahala, K.: Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12(20), 4742–4750 (2004)
CrossRef
Google scholar
|
[29] |
Jiang, X., Yang, L.: Optothermal dynamics in whispering-gallery microresonators. Light Sci. Appl. 9(1), 24(2020)
CrossRef
Google scholar
|
[30] |
Godey, C., Balakireva, I.V., Coillet, A., Chembo, Y.K.: Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89(6), 063814(2014)
CrossRef
Google scholar
|
[31] |
Chen, N., Zhang, B., Yang, H., Lu, X., He, S., Hu, Y., Chen, Y., Zhang, X., Xu, J.: Stability analysis of generalized Lugiato-Lefever equation with lumped filter for Kerr optical soliton generation in anomalous dispersion regime. In: Proceedings of Asian Communication and Photonics Conference (ACP 2021). Shanghai: IEEE, pp. T4A.187 (2022)
CrossRef
Google scholar
|
/
〈 | 〉 |