Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection

Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao

PDF(5025 KB)
PDF(5025 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 12. DOI: 10.1007/s12200-024-00115-5
RESEARCH ARTICLE

Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection

Author information +
History +

Abstract

Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as – 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.

Graphical abstract

Keywords

Microresonator / Optical frequency comb / Graphene / Gas sensing

Cite this article

Download citation ▾
Yupei Liang, Mingyu Liu, Fan Tang, Yanhong Guo, Hao Zhang, Shihan Liu, Yanping Yang, Guangming Zhao, Teng Tan, Baicheng Yao. Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection. Front. Optoelectron., 2024, 17(2): 12 https://doi.org/10.1007/s12200-024-00115-5

References

[1]
Cundiff,S.T., Ye,J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)
CrossRef Google scholar
[2]
Takamoto,M., Hong,F.L., Higashi,R., Katori, H.: An optical lattice clock. Nature 435(7040), 321–324 (2005)
CrossRef Google scholar
[3]
Picqué,N., Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019).
CrossRef Google scholar
[4]
Li,J.T., Chang,B., Du,J.T., Tan, T., Geng,Y., Zhou,H., Liang,Y.P., Zhang,H., Yan, G.F., Ma,L.M., Ran,Z.L., Wang,Z.N., Yao,B.C., Rao, Y.J.: Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. Sci. Adv. 10(3), eadf8666(2024)
CrossRef Google scholar
[5]
Chang,L., Liu,S., Bowers,J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
CrossRef Google scholar
[6]
Udem,T.: Optical Frequency Metrology. In: Reference Module in Materials Science and Materials Engineering, Elsevier (2016)
CrossRef Google scholar
[7]
Geng,Y., Zhou,H., Han,X., Cui, W., Zhang,Q., Liu,B., Deng,G., Zhou,Q., Qiu, K.: Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun. 13(1), 1070(2022)
CrossRef Google scholar
[8]
Li,Y., An,N., Lu,Z., Wang, Y., Chang,B., Tan,T., Guo,X., Xu,X., He, J., Xia,H., Wu,Z., Su,Y., Liu,Y., Rao, Y., Soavi,G., Yao,B.: Nonlinear co-generation of graphene plasmons for optoelectronic logic operations. Nat. Commun. 13(1), 3138(2022)
CrossRef Google scholar
[9]
Xu,X., Tan,M., Corcoran,B., Wu, J., Boes,A., Nguyen,T.G., Chu,S.T., Little,B.E., Hicks, D.G., Morandotti,R., Mitchell,A., Moss,D.J.: 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589(7840), 44–51 (2021)
CrossRef Google scholar
[10]
Qin,C., Du,J., Tan,T., Chang, B., Jia,K., Liang,Y., Wang,W., Guo,Y., Xia, H., Zhu,S., Rao,Y., Xie,Z., Yao,B.: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662(2023)
CrossRef Google scholar
[11]
Tan,T., Yuan,Z., Zhang,H., Yan, G., Zhou,S., An,N., Peng,B., Soavi,G., Rao, Y., Yao,B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716(2021)
CrossRef Google scholar
[12]
Kippenberg,T.J., Gaeta,A.L., Lipson,M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361, 640 (2018)
CrossRef Google scholar
[13]
Brasch,V., Geiselmann, M., Pfeiffer,M.H.P., Kippenberg,T.J.: Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24(25), 29312–29320 (2016)
CrossRef Google scholar
[14]
Zhou,H., Geng,Y., Cui,W., Huang, S.W., Zhou,Q., Qiu,K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50(2019)
CrossRef Google scholar
[15]
Qin,C., Jia,K., Li,Q., Tan, T., Wang,X., Guo,Y., Huang,S.W., Liu,Y., Zhu, S., Xie,Z., Rao,Y., Yao,B.: Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9(1), 185(2020)
CrossRef Google scholar
[16]
Hansson,T., Modotto, D., Wabnitz,S.: Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A 88(2), 023819(2013)
CrossRef Google scholar
[17]
Chen,R., Shu,H., Shen,B., Chang, L., Xie,W., Liao,W., Tao,Z., Bowers,J.E., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)
CrossRef Google scholar
[18]
Guo,Y., Li,Z., An,N., Guo, Y., Wang,Y., Yuan,Y., Zhang,H., Tan,T., Wu, C., Peng,B., Soavi,G., Rao,Y., Yao,B.: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), e2207777(2022)
CrossRef Google scholar
[19]
Zhang,H., Tan,T., Chen,H.J., Yu, Y., Wang,W., Chang,B., Liang,Y., Guo,Y., Zhou, H., Xia,H., Gong,Q., Wong,C.W., Rao,Y., Xiao, Y.F., Yao,B.: Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers. Phys. Rev. Lett. 130(15), 153802(2023)
CrossRef Google scholar
[20]
An,N., Tan,T., Peng,Z., Qin, C., Yuan,Z., Bi,L., Liao,C., Wang,Y., Rao, Y., Soavi,G., Yao,B.: Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 20(9), 6473–6480 (2020)
CrossRef Google scholar
[21]
Tan,T., Jiang,X., Wang,C., Yao, B., Zhang,H.: 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. (Weinh.) 7(11), 2000058(2020)
CrossRef Google scholar
[22]
Torres-Company,V., Castelló-Lurbe, D., Silvestre,E.: Comparative analysis of spectral coherence in microresonator frequency combs. Opt. Express 22(4), 4678–4691 (2014)
CrossRef Google scholar
[23]
Agha,I.H., Okawachi, Y., Gaeta,A.L.: Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express 17(18), 16209–16215 (2009)
CrossRef Google scholar
[24]
Vinod,A.K., Huang,S.W., Yang,J., Yu, M., Kwong,D.L., Wong,C.W.: Frequency microcomb stabilization via dual-microwave control. Commun. Phys. 4(1), 81(2021)
CrossRef Google scholar
[25]
Del’Haye,P., Beha, K., Papp,S.B., Diddams,S.A.: Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112(4), 043905(2014)
CrossRef Google scholar
[26]
Herr,T., Hartinger, K., Riemensberger,J., Wang,C.Y., Gavartin, E., Holzwarth,R., Gorodetsky,M.L., Kippenberg, T.J.: Universal formation dynamics and noise of Kerr-frequency combs in micro-resonators. Nat. Photonics 6(7), 480–487 (2012)
CrossRef Google scholar
[27]
Li,J., Lee,H., Chen,T., Vahala, K.J.: Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109(23), 233901(2012)
CrossRef Google scholar
[28]
Wang,Y., Li,Y., Li,Y., Zhang, H., Liu,Z., Guo,Y., Wang,Z., He,J., Guo, X., Wang,Y., Yao,B.: Noise canceled graphene-micro-cavity fiber laser sensor for ultrasensitive gas detection. Photon. Res. 11(8), A1(2023)
CrossRef Google scholar
[29]
Mikhailov,S.A., Ziegler, K.: New electromagnetic mode in graphene. Phys. Rev. Lett. 99(1), 016803(2007)
CrossRef Google scholar
[30]
Yao,B., Huang,S.W., Liu,Y., Vinod, A.K., Choi,C., Hoff,M., Li,Y., Yu,M., Feng, Z., Kwong,D.L., Huang,Y., Rao,Y., Duan,X., Wong, C.W.: Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558(7710), 410–414 (2018)
CrossRef Google scholar
[31]
Lugiato,L.A., Lefever, R.: Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58(21), 2209–2211 (1987)
CrossRef Google scholar
[32]
Fujii,S., Kato,T., Suzuki,R., Hori, A., Tanabe,T.: Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. J. Opt. Soc. Am. B 35(1), 100(2018)
CrossRef Google scholar
[33]
Liu,T., Sun,S., Gao,Y., Wang, S., Chu,Y., Guo,H.: Optical microcombs in whispering gallery mode crystalline resonators with dispersive intermode interactions. Photon. Res. 10(12), 2866(2022)
CrossRef Google scholar
[34]
Savchenkov,A.A., Matsko, A.B., Ilchenko,V.S., Maleki,L.: Optical resonators with ten million finesse. Opt. Express 15(11), 6768–6773 (2007)
CrossRef Google scholar
[35]
Huang,S.W., Yang,J., Yu,M., McGuyer, B.H., Kwong,D.L., Zelevinsky,T., Wong,C.W.: A broadband chip-scale optical frequency synthesizer at 2.7 × 10-16 relative uncertainty. Sci. Adv. 2(4), e1501489(2016)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(5025 KB)

Accesses

Citations

Detail

Sections
Recommended

/