REVIEW ARTICLE

Additive manufacturing: technology, applications and research needs

  • Nannan GUO ,
  • Ming C. LEU
Expand
  • Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

Received date: 13 Dec 2012

Accepted date: 23 Jan 2013

Published date: 05 Sep 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Additive manufacturing (AM) technology has been researched and developed for more than 20 years. Rather than removing materials, AM processes make three-dimensional parts directly from CAD models by adding materials layer by layer, offering the beneficial ability to build parts with geometric and material complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past two decades, significant progress has been made in the development and commercialization of new and innovative AM processes, as well as numerous practical applications in aerospace, automotive, biomedical, energy and other fields. This paper reviews the main processes, materials and applications of the current AM technology and presents future research needs for this technology.

Cite this article

Nannan GUO , Ming C. LEU . Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 0 , 8(3) : 215 -243 . DOI: 10.1007/s11465-013-0248-8

1
ASTM. ASTM F2792-10 standard terminology for additive manufacturing technologies

2
Jacobs P F. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Dearborn: SME publication, 1992

3
Comb J W, Priedeman W R, Turley P W. FDM technology process improvements. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 1994, 42–49

4
Beaman J J, Barlow J W, Bourell D L, Barlow J W, Crawford R H, McAlea K P. Solid Freeform Fabrication: A New Direction in Manufacturing. Norwell: Kluwer Academic Publishers, 1997, 25–49

5
Feygin M, Hsieh B. Laminated object manufacturing (LOM): a simpler process. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 1991, 123–130

6
Sachs M E, Haggerty J S, Cima M J, Williams P A. Three dimensional printing techniques. United States Patent, 5,204,055, 1993

7
Mazumder J, Schifferer A, Choi J. Direct materials deposition: designed macro and microstructure. Materials Research Innovations, 1999, 3(3): 118–131

DOI

8
Waterman N A, Dickens P. Rapid product development in the USA, Europe and Japan. World Class Design to Manufacture, 1994, 1(3): 27–36

DOI

9
Thomas C L, Gaffney T M, Kaza S, Lee C H. Rapid prototyping of large scale aerospace structures. In: Proceedings of Aerospace Applications Conference IEEE. Aspen, CO, 1996, 4: 219–230

10
Song Y, Yan Y, Zhang R, Xu D, Wang F. Manufacturing of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. Journal of Materials Processing Technology, 2002, 120(1-3): 237–242

DOI

11
Giannatsis J, Dedoussis V. Dedoussis. Additive fabrication technologies applied to medicine and health care: a review. International Journal of Advanced Manufacturing Technology, 2009, 40(1-2): 116–127

DOI

12
Sachlos E, Czernuszka J T. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. European Cells & Materials, 2003, 5: 29-39, discussion 39-40

PMID

13
Pham D T, Dimov S S. Rapid prototyping and rapid tooling – the key enablers for rapid manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(1): 1–23

14
Onuh S O, Yusuf Y Y. Rapid prototyping technology: applications and benefits for rapid product development. Journal of Intelligent Manufacturing, 1999, 10(3/4): 301–311

DOI

15
Goldsberry C. Rapid change in additive manufacturing landscape. http://www.plasticstoday.com/articles/rapid-change-additive-manufacturing-landscape. 2009

16
Kruth J P. Material increase manufacturing by rapid prototyping techniques. CIRP Annals- Manufacturing Technology, 1991, 40(2): 603–614

DOI

17
Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. CIRP Annals- Manufacturing Technology, 1998, 47(2): 525–540

DOI

18
Brady A G, Halloran J W. Stereolithography of ceramic suspensions. Rapid Prototyping Journal, 1997, 3(2): 61–65

DOI

19
Doreau F, Chaput C, Chartier T. Stereolithography for manufacturing ceramic parts. Advanced Engineering Materials, 2000, 2(8): 493–496

DOI

20
Chartier T, Chaput C, Doreau F, Loiseau M. Stereolithography of structural complex ceramic parts. Journal of Materials Science, 2002, 37(15): 3141–3147

DOI

21
Monneret S, Loubere V, Corbel S. Microstereolithography using dynamic mask generator and a non-coherent visible light source. Proceedings of the Society for Photo-Instrumentation Engineers, 1999, 3680: 553–561

DOI

22
Sun C, Fang N, Wu D M, Zhang X. Projection micro-stereolighography using digital micro-mirror dynamic mask. Sensors and Actuators. A, Physical, 2005, 121(1): 113–120

DOI

23
Chua C K, Leong K F, Lim C S. Rapid Prototyping: Principles and Applications. 3rd ed. Singapore: World Scientific Publishing Company, 2010, 165–171

24
Zhang W, Leu M C, Ji Z, Yan Y. Rapid freezing prototyping with water. Materials & Design, 1999, 20(2-3): 139–145

DOI

25
Leu M C, Zhang W, Sui G. An experimental and analytical study of ice part fabrication with rapid freeze prototyping. CIRP Annals- Manufacturing Technology, 2000, 49(1): 147–150

DOI

26
Leu M C. Rapid freeze prototyping. Materials World Journal, 2000: 9–11

27
Liu Q, Sui G, Leu M C. Experimental study on the ice pattern fabrication for the investment casting by rapid freeze prototyping. Computers in Industry, 2002, 48(3): 181–197

DOI

28
Bryant F D, Sui G, Leu M C. A study on effects of process parameters in rapid freeze prototyping. Rapid Prototyping Journal, 2003, 9(1): 19–23

DOI

29
Crump S S. Fused deposition modeling (FDM): putting rapid back into prototyping. In: The 2nd International Conference on Rapid Prototyping. Dayton, Ohio, 1991: 354–357

30
Jafari M A, Han W, Mohammadi F, Safari A, Danforth S C, Langrana N. A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping Journal, 2000, 6(3): 161–175

DOI

31
Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping Journal, 2005, 11(1): 9–17

DOI

32
Bellini A, Shor L, Guceri S I. New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 2005, 11(4): 214–220

DOI

33
Robocasting Enterprises L L C. http://www.robocasting.net/

34
Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla R K, Tomsia A P. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. Journal of Biomedical Materials Research. Part A, 2007, 83(2): 434–445

DOI PMID

35
Mason M S, Huang T, Landers R G, Leu M C, Hilmas G E. Aqueous based extrusion of high solids loading ceramic pastes: process modeling and control. Journal of Materials Processing Technology, 2009, 209(6): 2946–2957

DOI

36
Huang T, Mason M S, Hilmas G E, Leu M C. Aqueous based freeze-form extrusion fabrication of alumina components. Rapid Prototyping Journal, 2009, 15(2): 88–95

DOI

37
Liu H J, Leu M C. Liquid phase migration in extrusion of aqueous alumina paste for freeze-form extrusion fabrication. International Journal of Modern Physics B, 2009, 23(06n07): 1861–1866

DOI

38
Liu H J, Leu M C. Research on extrusion velocity in freeform extrusion fabrication of aqueous alumina paste. Key Engineering Materials, 2009, 419-420: 125–128

DOI

39
Pham D T, Dimov S, Lacan F.Selective laser sintering: applications and technological capabilities. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1999, 213(5): 435–449

40
Das S, Wohlert M, Beaman J J, Bourell D L. Producing metal parts with selective laser sintering/hot isostatic pressing. Journal of Materials, 1998, 50(12): 17–20

41
Kruth J P, Levy G, Klocke F, Childs T H C. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals- Manufacturing Technology, 2007, 56(2): 730–759

DOI

42
Kruth J P, Vandenbroucke B, Vaerenbergh J V, Mercelis P. Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In: Proceedings of International Conference Polymers & Moulds Innovations (PMI). Gent, Belgium, 2005

43
Kruth J P, Mercelis P, Vaerenbergh J V, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal, 2005, 11(1): 26–36

DOI

44
Kumar S. Selective laser sintering: a qualitative and objective approach. JOM, 2003, 55(10): 43–47

DOI

45
Levy G N, Schindel R, Kruth J P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Annals- Manufacturing Technology, 2003, 52(2): 589–609

DOI

46
Kruth J P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149(1-3): 616–622

DOI

47
Abe F, Osakada K, Shiomi M, Uematsu K, Matsumoto M. The manufacturing of hard tools from metallic powders by selective laser melting. Journal of Materials Processing Technology, 2001, 111(1-3): 210–213

DOI

48
Lu L, Fuh J, Chen Z, Leong C C, Wong Y S. In situ formation of TiC composite using selective laser melting. Materials Research Bulletin, 2000, 35(9): 1555–1561

DOI

49
Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder. International Journal of Machine Tools & Manufacture, 2006, 46(11): 1188–1193

DOI

50
Cormier D, Harrysson O, West H. Characterization of H13 steel produced via electron beam melting. Rapid Prototyping Journal, 2004, 10(1): 35–41

DOI

51
Heinl P, Rottmair A, Korner C, Singer R F. Cellular titanium by selective electron beam melting. Advanced Engineering Materials, 2007, 9(5): 360–364

DOI

52
Rännar L E, Glad A, Gustafson C G. Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyping Journal, 2007, 13(3): 128–135

DOI

53
Harrysson O, Cansizoglu O, Marcellin-Little D J, Cormier D R, West H A II. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering C, 2008, 28(3): 366–373

DOI

54
Cormier D, West H, Harrysson O, Knowlson K. Characterization of thin walled Ti-6Al-4V components produced via electron beam melting. In: Proceeding of Solid Freeform Fabrication Symposium. Austin, TX, 2004

55
Heinl P, Müller L, Körner C, Singer R F, Müller F A. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia, 2008, 4(5): 1536–1544

DOI PMID

56
Gasser A, Backes G, Kelbassa I, Weisheit A, Wissenbach K. Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications. Laser Material Processing, 2010, 2: 58–63

57
Balla V K, DeVasConCellos P D, Xue W, Bose S, Bandyopadhyay A. Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). Acta Biomaterialia, 2009, 5(5): 1831–1837

DOI PMID

58
Lewis G K, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition. Materials & Design, 2000, 21(4): 417–423

DOI

59
Zhang K, Liu W, Shang X. Research on the processing experiments of laser metal deposition shaping. Optics & Laser Technology, 2007, 39(3): 549–557

DOI

60
Lewis G K. Direct laser metal deposition process fabricates near-net-shape components rapidly. Materials Technology, 1995, 10(3): 51–54

61
Hofmeister W, Griffith M, Ensz M, Smugeresky J. Solidification in direct metal deposition by LENS processing. JOM, 2001, 53(9): 30–34

DOI

62
Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, Fan T, Khanuja S, Lauder A, Lee J, Michaels S. Three-dimensional printing: the physics and implications of additive manufacturing. CIRP Annals- Manufacturing Technology, 1993, 42(1): 257–260

DOI

63
Melican M C, Zimmerman M C, Dhillon M S, Ponnambalam A R, Curodeau A, Parsons J R. Three-dimensional printing and porous metallic surfaces: a new orthopedic application. Journal of Biomedical Materials Research, 2001, 55(2): 194–202

DOI PMID

64
Dimitrov D, Schreve K, Beer N. Advances in three dimensional printing – state of the art and future perspectives. Rapid Prototyping Journal, 2006, 12(3): 136–147

DOI

65
Lee M, Dunn J C, Wu B M. Scaffold fabrication by indirect three-dimensional printing. Biomaterials, 2005, 26(20): 4281–4289

DOI PMID

66
Butscher A, Bohner M, Roth C, Ernstberger A, Heuberger R, Doebelin N, von Rohr P R, Müller R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomaterialia, 2012, 8(1): 373–385

PMID

67
Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2005, 74(2): 782–788

DOI PMID

68
Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly form a CAD model. CIRP Annals- Manufacturing Technology, 1990, 39(1): 201–204

DOI

69
Bak D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation, 2003, 23(4): 340–345

DOI

70
Mueller B, Kochan D. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry, 1999, 39(1): 47–53

DOI

71
Prechtl M, Otto A, Geiger M. Rapid tooling by laminated object manufacturing of metal foil. Advanced Materials Research, 2005, 6-8: 303–312

DOI

72
Park J, Tari M J, Hahn H T. Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyping Journal, 2000, 6(1): 36–50

DOI

73
Weisensel L, Travitzky N, Sieber H, Greil P. Laminated object manufacturing (LOM) of SiSiC composites. Advanced Engineering Materials, 2004, 6(11): 899–903

DOI

74
Liao Y S, Li H C, Chiu Y Y. Study of laminated object manufacturing with separately applied heating and pressing. International Journal of Advanced Manufacturing Technology, 2006, 27(7-8): 703–707

DOI

75
Pham D T, Gault R S. A comparison of rapid prototyping technologies. International Journal of Machine Tools & Manufacture, 1998, 38(10-11): 1257–1287

DOI

76
Caulfield B, McHugh P E, Lohfeld S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process. Journal of Materials Processing Technology, 2007, 182(1-3): 477–488

DOI

77
Zarringhalam H, Majewski C, Hopkinson N. Degree of particle melt in Nylon-12 selective laser-sintered parts. Rapid Prototyping Journal, 2009, 15(2): 126–132

DOI

78
Ahn S H, Montero M, Odell D, Roundy S, Wright P K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 2002, 8(4): 248–257

DOI

79
Lam C X F, Mo X M, Teoh S H, Hutmacher D W. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 2002, 20(1-2): 49–56

DOI

80
Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. Annals- Manufacturing Technology, 2007, 56(1): 205–208

DOI

81
Leong K F, Wiria F E, Chua C K, Li S H. Characterization of a poly-ϵ-caprolactone polymeric drug delivery device built by selective laser sintering. Bio-Medical Materials and Engineering, 2007, 17(3): 147–157

PMID

82
Ramanath H S, Chua C K, Leong K F, Shah K D. Melt flow behaviour of poly-ϵ-caprolactone in fused deposition modelling. Journal of Materials Science. Materials in Medicine, 2008, 19(7): 2541–2550

DOI PMID

83
Ramanath H S, Chandrasekaran M, Chua C K, Leong K F, Shah K D. Modeling of extrusion behavior of biopolymer and composites in fused deposition modeling. Key Engineering Materials, 2007, 334-335: 1241–1244

DOI

84
Cheah C M, Chua C K, Lee C W, Feng C, Totong K. Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. International Journal of Advanced Manufacturing Technology, 2005, 25(3-4): 308–320

DOI

85
Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Direct selective laser sintering of metals. Rapid Prototyping Journal, 1995, 1(1): 26–36

DOI

86
Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Post-processing of selective laser sintered metal parts. Rapid Prototyping Journal, 1995, 1(2): 36–44

DOI

87
Allen S M, Sachs E M. Three-dimensional printing of metal parts for tooling and other applications. Metals and Materials, 2000, 6(6): 589–594

DOI

88
Clarinval A M, Carrus R, Dormal T, Soyeur Q. Fabrication of stainless steel and ceramic parts with the Optoform process. Advanced Research inVirtual and Rapid Manufacturing. London: Taylor & Francis Group, 2007: 415–418

89
Richard G. Additive manufacturing of titanium. Optomec Inc. 2009

90
Mudge R P, Wald N R. Laser engineered net shaping advances additive manufacturing and repair. Welding Journal-New York, 2007, 86(1): 44–48

91
MTT Technologies Group. MTT selective laser melting. 2009

92
Arcam A B. http://www.arcam.com

93
Strondl A, Palm M, Gnauk J, Frommeyer G. Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Materials Science and Technology, 2011, 27(5): 876–883

94
Otubo J, Antunes A S. Characterization of 150 mm in diameter NiTi SMA ingot produced by electron beam melting. Materials Science Forum, 2010, 643: 55–59

DOI

95
Sachs E, Cima M, Bredt J. CAD-casting: direct fabrication of ceramic shells and cores by three-dimensional printing. Manufacturing Review (USA), 1992, 5(2): 117–126

96
Rudraraju A, Deptowicz D, Das S. Strategies for fabricating next-generation multifunctional airfoil designs through LAMP. In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2011

97
Yuan D, Kambly K, Shao P, Rudraraju A, Cilio P, Tomeckoa V, Torres C, Halloran J W, Das S. Experimental investigations on a photocurable ceramic material system for large area maskless photolymerization. In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2009

98
Corporation Z. 3DP Consumables Catalog. 2010

99
Allahverdi M, Danforth S C, Jafari M, Safari A. Processing of advanced electroceramic components by fused deposition technique. Journal of the European Ceramic Society, 2001, 21(10-11): 1485–1490

DOI

100
Rangarajan S, Qi G, Venkataraman N, Safari A, Danforth S C. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics. Journal of the American Ceramic Society, 2000, 83(7): 1663–1669

DOI

101
Agarwala M K, Weeren R, Bandyopadhyay A, Whalen P J, Safari A, Danforth S C. Fused deposition of ceramics and metals: an overview. In: Proceeding of Solid Freeform Fabrication Symposium. Austin, TX, 1996

102
Sun W, Dcosta D J, Lin F, El-Raghy T. Freeform fabrication of Ti3SiC2 powder-based structures, part I – integrated fabrication process. Journal of Materials Processing Technology, 2002, 127(3): 343–351

DOI

103
Leu M C, Pattnaik S, Hilmas G E. Optimization of selective laser sintering process for fabrication of zirconium diboride parts. In: Proceeding of International Solid Freeform Fabrication Symposium. Austin, TX, 2010

104
Phenix Systems. http://www.phenix-systems.com/home_en.php

105
Guo N, Leu M C. Effect of different graphite materials on electrical conductivity and flexural strength of bipolar plates fabricated by selective laser sintering. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2010

106
Goodridge R D, Dalgarno K W, Wood D J. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2006, 220(1): 57–68

DOI PMID

107
Griffith M L, Halloran J W. Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 1996, 79(10): 2601–2608

DOI

108
Dufaud O, Corbel S. Stereolithography of PZT ceramic suspensions. Rapid Prototyping Journal, 2002, 8(2): 83–90

DOI

109
Hinczewski C, Corbel S, Chartier T. Ceramic suspensions suitable for stereolithography. Journal of the European Ceramic Society, 1998, 18(6): 583–590

DOI

110
Wilkes J, Hagedorn Y C, Meiners W, Wissenbach K. Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting. Rapid Prototyping Journal, 2013, 19(1): 51–57

DOI

111
Balla V K, Bose S, Bandyopadhyay A. Processing of bulk alumina ceramics using laser engineered net shaping. International Journal of Applied Ceramic Technology, 2008, 5(3): 234–242

DOI

112
Kumar S, Kruth J P. Composites by rapid prototyping technology. Materials & Design, 2010, 31(2): 850–856

DOI

113
Klosterman D, Chartoff R, Graves G, Osborne N, Priore B. Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos Part A, 1998, 29(9-10): 1165–1174

DOI

114
Wiria F E, Leong K F, Chua C K, Liu Y. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, 2007, 3(1): 1–12

DOI PMID

115
Eosoly S, Lohfeld S, Brabazon D. Effect of hydroxyapatite on biodegradable scaffolds fabricated by SLS. Key Engineering Materials, 2009, 396-398: 659–662

DOI

116
Leong C C, Lu L, Fuh J Y H, Wong Y S. In-situ formation of copper matrix composites by laser sintering. Materials Science and Engineering A, 2002, 338(1-2): 81–88

DOI

117
Evans R S, Bourell D L, Beaman J J, Campbell M I. Rapid manufacturing of silicon carbide composites. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2004

118
Stevinson B Y, Bourell D L, Beaman J J. Over-infiltration mechanisms in selective laser sintered Si/SiC preforms. Rapid Prototyping Journal, 2008, 14(3): 149–154

DOI

119
Suwanprateeb J, Sanngam R, Suvannapruk W, Panyathanmaporn T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. Journal of Materials Science. Materials in Medicine, 2009, 20(6): 1281–1289

DOI PMID

120
Rambo C R, Travitzky N, Zimmermann K, Greil P. Synthesis of TiC/Ti-Cu composites by pressureless reactive infiltration of TiCu alloy into carbon performs fabricated by 3D-printing. Materials Letters, 2005, 59(8-9): 1028–1031

DOI

121
Nikzad M, Masood S H, Sbarski I, Groth A. Rheological properties of a particulate-filled polymeric composite through fused deposition process. Materials Science Forum, 2010, 654-656: 2471–2474

DOI

122
Zhong W, Li F, Zhang Z, Song L, Li Z. Short fiber reinforced composites for fused deposition modeling. Materials Science and Engineering, 2001, A301: 125–130

123
Shofner M L, Lozano K, Rodriguez-Macias F J, Barrera E V. Nanofiber-reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science, 2003, 89: 3081–3090

DOI

124
Klosterman D, Chartoff R, Agarwala M, Fiscus I, Murphy J, Cullen S, Yeazell M. Direct fabrication of polymer composite structures with curved LOM. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 1999: 401–409

125
Klosterman D A, Chartoff R P, Osborne N R, Graves G A, Lightman A, Han G, Bezeredi A, Rodrigues S. Curved layer LOM of ceramics and composites. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 1998: 671–680

126
Jackson T R, Liu H, Patrikalakis N M, Sachs E M, Cima M J. Modelling and designing functionally graded material components for fabrication with local composition control. Materials & Design, 1999, 20(2-3): 63–75

DOI

127
Bandyopadhyay A, Krishna B V, Xue W, Bose S. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. Journal of Materials Science. Materials in Medicine, 2009, 20(S1 Suppl 1): 29–34

DOI PMID

128
Vamsi Krishna B, Xue W, Bose S, Bandyopadhyay A. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. Acta Biomaterialia, 2008, 4(3): 697–706

DOI PMID

129
Liu W, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Materialia, 2003, 48(9): 1337–1342

DOI

130
Domack M S, Baughman J M. Development of nickel-titanium graded composition components. Rapid Prototyping Journal, 2005, 11(1): 41–51

DOI

131
Wang F, Mei J, Wu X. Compositionally graded Ti6Al4V+ TiC made by direct laser fabrication using powder and wire. Materials & Design, 2007, 28(7): 2040–2046

DOI

132
Leu M C, Tang L, Deuser B, Landers R G, Hilmas G E, Zhang S, Watts J. Freeze-form extrusion fabrication of composite structures. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2011, 111–124

133
Optomec. http://www.optomec.com/

134
Concept Laser Gmb H. http://www.concept-laser.de/

135
Morris Technologies. http://www.morristech.com/

136
Prometal R C T. http://www.prometal-rct.com/

137
Hedges M, Calder N. Near net shape rapid manufacture & repair by LENS. In: Cost Effective Manufacture via Net-shape Processing. Neuilly-sur-Seine, France, 2006, 13–1-4

138
Kelbassa I, Gasser A, Wissenbach K. Laser cladding as a repair technique for blisks out of titanium and nickel based alloys used in aero engines. In: Proceedings of the 1st Pacific International Conference on Application of Lasers and Optics. Melbourne, 2004

139
Xue L, Islam M U. Laser consolidation–a novel one-step manufacturing process for making net-shape functional components. In: Cost Effective Manufacturing via Net-Shape Processing. Neuilly-sur-Seine, France, 2006, 15–1-4

140
Richter K H, Orban S, Nowotny S. Laser cladding of the titanium alloy Ti6242 to restore damaged blades. In: Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics. 2004

141
Qi H, Azer M, Singh P. Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils. International Journal of Advanced Manufacturing Technology, 2010, 48(1-4): 121–131

DOI

142
Liou F, Slattery K, Kinsella M, Newkirk J, Chou H N, Landers R. Applications of a hybrid manufacturing process for fabrication of metallic structures. Rapid Prototyping Journal, 2007, 13(4): 236–244

DOI

143
Liou F W, Choi J, Landers R G, Janardhan V, Balakrishnan S N, Agarwal S. Research and development of a hybrid rapid manufacturing process. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2001

144
Ren L, Padathu A P, Ruan J, Sparks T, Liou F W. Three dimensional die repair using a hybrid manufacturing system. In: Proceedings of Solid Freeform Fabrication Symposium. Austin, TX, 2006

145
Bae C J. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography. Dissertation for Doctor Degree. University of Michigan, 2008

146
Wu H, Li D, Guo N. Fabrication of integral ceramic mold for investment casting of hollow turbine blade based on stereolithography. Rapid Prototyping Journal, 2009, 15(4): 232–237

DOI

147
Wu H, Li D, Tang Y, Guo N, Sun B, Xu D. Rapid casting of hollow turbine blade using integral ceramic moulds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2009, 223(6): 695–702

148
Murr L E, Gaytan S M, Medina F, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Wicker R B. Characterization of Ti6Al4V open cellular foams fabricated by additive manufacturing using electron beam melting. Materials Science and Engineering A, 2010, 527(7-8): 1861–1868

DOI

149
Gaytan S, Murr L, Medina F, Martinez E, Martinez L, Wicker R. Fabrication and characterization of reticulated, porous mesh arrays and foams for aerospace applications by additive manufacturing using electron beam melting. In: Proceedings of Minerals, Metals and Materials Society/AIME. Warrendale PA, 2010

150
Daneshmand S, Adelnia R, Aghanajafi S. Design and production of wind tunnel testing models with selective laser sintering technology using glass-reinforced Nylon. Materials Science Forum, 2006, 532-533: 653–656

151
Technology CRP. http://www.crptechnology.com

152
Vilaro T, Abed S, Knapp W.Direct manufacturing of technical parts using selective laser melting: example of automotive application. In: Proceedings of 12th European Forum on Rapid Prototyping. 2008

153
Rosochowski A, Matuszak A. Rapid tooling: the state of the art. Journal of Materials Processing Technology, 2000, 106(1-3): 191–198

DOI

154
Bassoli E, Gatto A, Iuliano L, Violante M G. 3D printing technique applied to rapid casting. Rapid Prototyping Journal, 2007, 13(3): 148–155

DOI

155
Murr L E, Gaytan S M, Ceylan A, Martinez E, Martinez J L, Hernandez D H, Machado B I, Ramirez D A, Medina F, Collins S. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia, 2010, 58(5): 1887–1894

DOI

156
Ilardo R, Williams C B. Design and manufacture of a formula SAE intake system using fused deposition modeling and fiber-reinforced composite materials. Rapid Prototyping Journal, 2010, 16(3): 174–179

DOI

157
Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication, 2010, 2(4): 045004

DOI PMID

158
Adler Ortho Group. http://www.alaortho.com/indBigEng.htm. Accessed in 2010

159
Liu Q, Leu M C, Schmitt S M. Rapid prototyping in dentistry: technology and application. International Journal of Advanced Manufacturing Technology, 2006, 29(3-4): 317–335

DOI

160
Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metal for rapid manufacturing of medical parts. Rapid Prototyping Journal, 2007, 13(4): 196–203

DOI

161
Peltola S M, Melchels F P, Grijpma D W, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine, 2008, 40(4): 268–280

DOI PMID

162
Cooke M N, Fisher J P, Dean D, Rimnac C, Mikos A G. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of biomedical materials research. Part B, Applied biomaterials, 2003, 64(2): 65–69

DOI PMID

163
Kolan K C, Leu M C, Hilmas G E, Velez M. Selective laser sintering of 13-93 bioactive glass. In: Proceeding of the Solid Freeform Fabrication Symposium. Austin, TX, 2010

164
Liu Y F, Dong X T, Zhu F D. Overview of rapid prototyping for fabrication of bone tissue engineering scaffold. Advanced Materials Research, 2010, 102-104: 550–554

DOI

165
Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18): 3413–3431

DOI PMID

166
Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121–6130

DOI PMID

167
Chim H, Hutmacher D W, Chou A M, Oliveira A L, Reis R L, Lim T C, Schantz J T. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. International Journal of Oral and Maxillofacial Surgery, 2006, 35(10): 928–934

DOI PMID

168
Zein I, Hutmacher D W, Tan K C, Teoh S H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23(4): 1169–1185

DOI PMID

169
Lorrison J C, Goodridge R D, Dalgarno K W, Wood D J. Selective laser sintering of bioactive glass-ceramics. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2002

170
Weinand C, Pomerantseva I, Neville C M, Gupta R, Weinberg E, Madisch I, Shapiro F, Abukawa H, Troulis M J, Vacanti J P. Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone, 2006, 38(4): 555–563

DOI PMID

171
Williams J M, Adewunmi A, Schek R M, Flanagan C L, Krebsbach P H, Feinberg S E, Hollister S J, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005, 26(23): 4817–4827

DOI PMID

172
Tan K H, Chua C K, Leong K F, Cheah C M, Cheang P, Abu Bakar M S, Cha S W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials, 2003, 24(18): 3115–3123

DOI PMID

173
Arcaute K, Mann B K, Wicker R B. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Annals of Biomedical Engineering, 2006, 34(9): 1429–1441

DOI PMID

174
Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Engineering, 2004, 10(9-10): 1316–1322

DOI PMID

175
Dellinger J G, Eurell J A C, Stewart M, Jamison R D. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2. Journal of Biomedical Materials Research. Part A, 2 006, 76(2): 366–376

DOI PMID

176
Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Biofabrication, 2009, 1(1): 015003

DOI PMID

177
Kolan K C, Doiphode N D, Leu M C. Selective laser sintering and freeze extrusion fabrication of scaffolds for bone repair using 13-93 bioactive glass: a comparison. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, Texas, 2010

178
Kolan K C, Leu M C, Hilmas G E, Brown R F, Velez M. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication, 2011, 3(2): 025004

DOI PMID

179
Lin L, Ju S, Cen L, Zhang H, Hu Q. Fabrication of porous β-TCP scaffolds by combination of rapid prototyping and freeze drying technology. IFMBE Proceedings, 2008, 19(4): 88–91

DOI

180
Chen Z, Li D, Lu B, Tang Y, Sun M, Wang Z. Fabrication of artificial bioactive bone using rapid prototyping. Rapid Prototyping Journal, 2004, 10(5): 327–333

DOI

181
Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication, 2009, 1(2): 022001

DOI PMID

182
Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, 2009, 30(31): 6221–6227

DOI PMID

183
Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnology Journal, 2006, 1(9): 910–917

DOI PMID

184
Wilson W C Jr, Boland T. Cell and organ printing 1: protein and cell printers. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 491–496

DOI PMID

185
Boland T, Mironov V, Gutowska A, Roth E A, Markwald R R. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003, 272(2): 497–502

DOI PMID

186
Mironov V, Boland T, Trusk T, Forgacs G, Markwald R R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003, 21(4): 157–161

DOI PMID

187
U.S. Department of Energy. Future fuel cells R&D. http://www.fossil.energy.gov/programs/powersystems/fuelcells/. Accessed in 2010

188
Chen S, Bourell D L, Wood K L. Fabrication of PEM fuel cell bipolar plates by indirect SLS. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2004, 244–256

189
Chen S, Murphy J, Herlehy J, Bourell D L, Wood K L. Development of SLS fuel cell current collectors. Rapid Prototyping Journal, 2006, 12(5): 275–282

DOI

190
Alayavalli K, Bourell D L. Fabrication of electrically conductive, fluid impermeable direct methanol fuel cell (DMFC) graphite bipolar plates by indirect selective laser sintering (SLS). In: Proceedings of the International Solid Freeform Fabrication Symposium. Austin, TX, 2008, 186–193

191
Alayavalli K, Bourell D L. Fabrication of modified graphite bipolar plates by indirect selective laser sintering (SLS) for direct methanol fuel cells. Rapid Prototyping Journal, 2010, 16(4): 268–274

DOI

192
Guo N, Leu M C. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. International Journal of Hydrogen Energy, 2012, 37(4): 3558–3566

DOI

193
Bourell D L, Leu M C, Chakravarthy K, Guo N, Alayavalli K. Graphite-based indirect laser sintered fuel cell bipolar plates containing carbon fiber additions. CIRP Annals-Manufacturing Technology, 2011, 60(1): 275–278

DOI

194
Guo N, Leu M C. Experimental study of polymer electrolyte membrane fuel cells using a graphite composite bipolar plate fabricated by selective laser sintering. In: Proceeding of the Solid Freeform Fabrication Symposium. Austin, TX, 2012

195
Guo N, Leu M C, Wu M. Bio-inspired design of bipolar plate flow fields for polymer electrolyte membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2011

196
Wu M, Leu M C, Guo N. Simulation and testing of polymer electrolyte membrane fuel cell bipolar plates fabricated by selective laser sintering. In: Proceedings of ASME 2012 International Symposium on Flexible Automation. St. Louis, MO, 2012

197
Taghipour E, Leu M C, Guo N. Comparison of compression molding and selective laser sintering processes in the development of composite bipolar plates for proton exchange membrane fuel cells. In: Proceedings of the Solid Freeform Fabrication Symposium. Austin, TX, 2012

198
Bourell D L, Leu M C, Rosen D W. Roadmap for additive manufacturing: identifying the future of freeform processing. The University of Texas at Austin, Laboratory for Freeform Fabrication. Austin, TX, 2009, 7–10

199
Xue L, Purcell C. Laser consolidation of net-shape shells for flextensional sonar projectors. In: Proceedings of ICALEO. Scottsdale, AZ, 2006

Outlines

/