RESEARCH ARTICLE

Design and evaluation of a novel biopsy needle with hemostatic function

  • Xiaolong ZHU 1 ,
  • Yichi MA 2 ,
  • Xiao XIAO 1 ,
  • Liang LU 1 ,
  • Wei XIAO 1 ,
  • Ziqi ZHAO 1 ,
  • Hongliang REN , 3 ,
  • Max Q.-H. MENG , 1
Expand
  • 1. Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 2. Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 48072, USA
  • 3. Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
hlren@ee.cuhk.edu.hk
mengqh@sustech.edu.cn

Received date: 16 Feb 2022

Accepted date: 22 Aug 2022

Copyright

2023 Higher Education Press

Abstract

Biopsy is a method commonly used for early cancer diagnosis. However, bleeding complications of widely available biopsy are risky for patients. Safer biopsy will result in a more accurate cancer diagnosis and a decrease in the risk of complications. In this article, we propose a novel biopsy needle that can reduce bleeding during biopsy procedures and achieve stable hemostasis. The proposed biopsy needle features a compact structure and can be operated easily by left and right hands. A predictive model for puncture force and tip deflection based on coupled Eulerian–Lagrangian (CEL) method is developed. Experimental results show that the biopsy needle can smoothly deliver the gelatin sponge hemostatic plug into the tissue. Although the hemostatic plug bends, the overall delivery process is stable, and the hemostatic plug retains in the tissue without being affected by the withdrawal of the needle. Further experiments indicate that the specimens are well obtained and evenly distributed in the groove of the outer needle without scattering. Our proposed design of biopsy needle possesses strong ability of hemostasis, tissue cutting, and tissue retention. The CEL model accurately predicts the peak of puncture force and produces close estimation of the insertion force at the postpuncture stage and tip position.

Cite this article

Xiaolong ZHU , Yichi MA , Xiao XIAO , Liang LU , Wei XIAO , Ziqi ZHAO , Hongliang REN , Max Q.-H. MENG . Design and evaluation of a novel biopsy needle with hemostatic function[J]. Frontiers of Mechanical Engineering, 2023 , 18(2) : 22 . DOI: 10.1007/s11465-022-0738-7

Nomenclature

Abbreviations
CELCoupled Eulerian–Lagrangian
FEAFinite element analysis
IDInner diameter
ODOuter diameter
Variables
C10Shear modulus of the tissue
EnYoung’s modulus of the needle
fFrictional resistance
g1, g2Relaxation moduli of parts 1 and 2, respectively
G0Relaxation modulus G(t) evaluated in t = 0
GiRelaxation modulus G(t) evaluated in t = τi
G(t)Relaxation modulus
JElastic volume ratio
kBulk modulus
KStiffness coefficient of spring A
mMass of the slider and inner needle
pHydrostatic pressure
tCutting time
vCutting velocity
WStrain energy density
xDisplacement of slider
μShear modulus
λiShield gravity
σNominal stress
σiNominal stress component
εPrincipal stain
εiPrincipal stain component
νnPoisson’s ratio of the needle
ρnDensity of the needle
ρtDensity of the tissue
τi (i = 1,2)Relaxation time

Acknowledgements

This work was partially supported by Shenzhen Key Laboratory of Robotics Perception and Intelligence (Southern University of Science and Technology, China) (Grant No. ZDSYS20200810171800001).

Conflict of Interest

Authors declare no conflict of interest regarding the submitted manuscript.
1
Fitzmaurice C , Dicker D , Pain A , Hamavid H , Moradi-Lakeh M , MacIntyre M F , Allen C , Hansen G , Woodbrook R , Wolfe C , Hamadeh R R , Moore A , Werdecker A , Gessner B D , Te Ao B , McMahon B , Karimkhani C , Yu C H , Cooke G S , Schwebel D C , Carpenter D O , Pereira D M , Nash D , Kazi D S , De Leo D , Plass D , Ukwaja K N , Thurston G D , Jin K Y , Simard E P , Mills E , Park E K , Catalá-López F , deVeber G , Gotay C , Khan G , Hosgood H D III , Santos I S , Leasher J L , Singh J , Leigh J , Jonas J B , Sanabria J , Beardsley J , Jacobsen K H , Takahashi K , Franklin R C , Ronfani L , Montico M , Naldi L , Tonelli M , Geleijnse J , Petzold M , Shrime M G , Younis M , Yonemoto N , Breitborde N , Yip P , Pourmalek F , Lotufo P A , Esteghamati A , Hankey G J , Ali R , Lunevicius R , Malekzadeh R , Dellavalle R , Weintraub R , Lucas R , Hay R , Rojas-Rueda D , Westerman R , Sepanlou S G , Nolte S , Patten S , Weichenthal S , Abera S F , Fereshtehnejad S M , Shiue I , Driscoll T , Vasankari T , Alsharif U , Rahimi-Movaghar V , Vlassov V V , Marcenes W S , Mekonnen W , Melaku Y A , Yano Y , Artaman A , Campos I , MacLachlan J , Mueller U , Kim D , Trillini M , Eshrati B , Williams H C , Shibuya K , Dandona R , Murthy K , Cowie B , Amare A T , Antonio C A , Castañeda-Orjuela C , van Gool C H , Violante F , Oh I H , Deribe K , Soreide K , Knibbs L , Kereselidze M , Green M , Cardenas R , Roy N , Tillmann T , Li Y M , Krueger H , Monasta L , Dey S , Sheikhbahaei S , Hafezi-Nejad N , Kumar G A , Sreeramareddy C T , Dandona L , Wang H D , Vollset S E , Mokdad A , Salomon J A , Lozano R , Vos T , Forouzanfar M , Lopez A , Murray C , Naghavi M . The global burden of cancer 2013. JAMA Oncology, 2015, 1(4): 505–527

DOI

2
Burgard C , Stahl R , de Figueiredo G N , Dinkel J , Liebig T , Cioni D , Neri E , Trumm C G . Percutaneous CT fluoroscopy-guided core needle biopsy of mediastinal masses: technical outcome and complications of 155 procedures during a 10-year period. Diagnostics, 2021, 11(5): 781

DOI

3
James T W , Baron T H . A comprehensive review of endoscopic ultrasound core biopsy needles. Expert Review of Medical Devices, 2018, 15(2): 127–135

DOI

4
TanisakaYMizuideMFujitaAOgawaTArakiRSuzukiMKatsudaHSaitoYMiyaguchiKTashimaTMashimoYYasudaMRyozawaS. Comparison of endoscopic ultrasound-guided fine-needle aspiration and biopsy device for lymphadenopathy. Gastroenterology Research and Practice, 2021, 6640862

5
Kurita A , Yasukawa S , Zen Y , Yoshimura K , Ogura T , Ozawa E , Okabe Y , Asada M , Nebiki H , Shigekawa M , Ikeura T , Eguchi T , Maruyama H , Ueki T , Itonaga M , Hashimoto S , Shiomi H , Minami R , Hoki N , Takenaka M , Itokawa Y , Uza N , Hashigo S , Yasuda H , Takada R , Kamada H , Kawamoto H , Kawakami H , Moriyama I , Fujita K , Matsumoto H , Hanada K , Takemura T , Yazumi S . Comparison of a 22-gauge franseen-tip needle with a 20-gauge forward-bevel needle for the diagnosis of type 1 autoimmune pancreatitis: a prospective, randomized, controlled, multicenter study (COMPAS study). Gastrointestinal Endoscopy, 2020, 91(2): 373–381

DOI

6
Ashat M , Klair J S , Rooney S L , Vishal S J , Jensen C , Sahar N , Murali A R , El-Abiad R , Gerke H . Randomized controlled trial comparing the franseen needle with the fork-tip needle for EUS-guided fine-needle biopsy. Gastrointestinal Endoscopy, 2021, 93(1): 140–150

DOI

7
Hedenström P , Demir A , Khodakaram K , Nilsson O , Sadik R . EUS-guided reverse bevel fine-needle biopsy sampling and open tip fine-needle aspiration in solid pancreatic lesions—a prospective, comparative study. Scandinavian Journal of Gastroenterology, 2018, 53(2): 231–237

DOI

8
de Jong T L , Pluymen L H , van Gerwen D J , Kleinrensink G J , Dankelman J , van den Dobbelsteen J J . PVA matches human liver in needle-tissue interaction. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 223–228

DOI

9
Mukai S , Itoi T , Yamaguchi H , Sofuni A , Tsuchiya T , Tanaka R , Tonozuka R , Honjo M , Fujita M , Yamamoto K , Matsunami Y , Asai Y , Kurosawa T , Nagakawa Y . A retrospective histological comparison of EUS-guided fine-needle biopsy using a novel franseen needle and a conventional end-cut type needle. Endoscopic Ultrasound, 2019, 8(1): 50–57

DOI

10
Eiro M , Katoh T , Watanabe T . Risk factors for bleeding complications in percutaneous renal biopsy. Clinical and Experimental Nephrology, 2005, 9(1): 40–45

DOI

11
Csukas D , Urbanics R , Moritz A , Ellis-Behnke R . AC5 Surgical HemostatTM as an effective hemostatic agent in an anticoagulated rat liver punch biopsy model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11(8): 2025–2031

DOI

12
Lyle M A , Dean D S . Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients taking novel oral anticoagulants. Thyroid, 2015, 25(4): 373–376

DOI

13
Fujita M , Shiotani A , Murao T , Ishii M , Yamanaka Y , Nakato R , Matsumoto H , Tarumi K , Manabe N , Kamada T , Hata J , Haruma K . Safety of gastrointestinal endoscopic biopsy in patients taking antithrombotics. Digestive Endoscopy, 2015, 27(1): 25–29

DOI

14
Deng C X , Dogra V , Exner A A , Wang H S , Bhatt S , Zhou Y , Stowe N T , Haaga J R . A feasibility study of high intensity focused ultrasound for liver biopsy hemostasis. Ultrasound in Medicine & Biology, 2004, 30(11): 1531–1537

DOI

15
Viola F, Mauldin F W, Lin-Schmidt X, Haverstick D M, Lawrence M B, Walker W F. A novel ultrasound-based method to evaluate hemostatic function of whole blood. Clinica Chimica Acta, 2010, 411(1–2): 106–113

DOI

16
Alotaibi M , Shrouder-Henry J , Amaral J , Parra D , Temple M , John P , Connolly B . The positive color Doppler sign post biopsy: effectiveness of US-directed compression in achieving hemostasis. Pediatric Radiology, 2011, 41(3): 362–368

DOI

17
Abdulhak A H, Nichols C S. Stick and move: hemostasis for inpatient punch biopsies. Journal of the American Academy of Dermatology, 2021 (in press)

18
Rahal Junior A , Falsarella P M , Ferreira V T R , Mariotti G C , de Queiroz M R G , Garcia R G . Injecting hemostatic matrix in the path of biopsies: efficacy, potential complications, and the management of such complications. Radiologia Brasileira, 2018, 51(2): 102–105

DOI

19
Wong P , Johnson K J , Warner R L , Merz S I , Kruger G H , Weitzel W F . Performance of biopsy needle with therapeutic injection system to prevent bleeding complications. Journal of Medical Devices, 2013, 7(1): 011002

DOI

20
Su B Q , Yu S , Yan H , Hu Y D , Buzurovic I , Liu D Y , Liu L L , Teng Y L , Tang J , Wang J C , Liu W Y . Biopsy needle system with a steerable concentric tube and online monitoring of electrical resistivity and insertion forces. IEEE Transactions on Biomedical Engineering, 2021, 68(5): 1702–1713

DOI

21
Lapouge G , Poignet P , Troccaz J . Towards 3D ultrasound guided needle steering robust to uncertainties, noise, and tissue heterogeneity. IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1166–1177

DOI

22
Misra S , Reed K B , Schafer B W , Ramesh K T , Okamura A M . Mechanics of flexible needles robotically steered through soft tissue. International Journal of Robotics Research, 2010, 29(13): 1640–1660

DOI

23
Jushiddi M G , Mani A , Silien C , Tofail S A M , Tiernan P , Mulvihill J J E . A computational multilayer model to simulate hollow needle insertion into biological porcine liver tissue. Acta Biomaterialia, 2021, 136: 389–401

DOI

24
Konh B , Honarvar M , Darvish K , Hutapea P . Simulation and experimental studies in needle–tissue interactions. Journal of Clinical Monitoring and Computing, 2017, 31(4): 861–872

DOI

25
Jiang S , Li P , Yu Y , Liu J , Yang Z Y . Experimental study of needle–tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics. Journal of Biomechanics, 2014, 47(13): 3344–3353

DOI

26
de la Torre R A , Bachman S L , Wheeler A A , Bartow K N , Scott J S . Hemostasis and hemostatic agents in minimally invasive surgery. Surgery, 2007, 142(4): S39–S45

DOI

27
Balakrishnan B , Soman D , Payanam U , Laurent A , Labarre D , Jayakrishnan A . A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomaterialia, 2017, 53: 343–354

DOI

28
Tompeck A J , Gajdhar A U R , Dowling M , Johnson S B , Barie P S , Winchell R J , King D , Scalea T M , Britt L D , Narayan M . A comprehensive review of topical hemostatic agents: the good, the bad, and the novel. Journal of Trauma and Acute Care Surgery, 2020, 88(1): e1–e21

DOI

29
Stauffer P R , Rossetto F , Prakash M , Neuman D G , Lee T . Phantom and animal tissues for modelling the electrical properties of human liver. International Journal of Hyperthermia, 2003, 19(1): 89–101

DOI

30
Carter F J , Frank T G , Davies P J , McLean D , Cuschieri A . Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 2001, 5(4): 231–236

DOI

31
Wineman A . Nonlinear viscoelastic solids—a review. Mathematics and Mechanics of Solids, 2009, 14(3): 300–366

DOI

32
Yang J , Yu L T , Wang L , Wang W J , Cui J W . The estimation method of friction in unconfined compression tests of liver tissue. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232(6): 573–587

DOI

33
Estermann S J , Pahr D H , Reisinger A . Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104038

DOI

34
Li L , Maccabi A , Abiri A , Juo Y Y , Zhang W Y , Chang Y J , Saddik G N , Jin L H , Grundfest W S , Dutson E P , Eldredge J D , Benharash P , Candler R N . Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 591–603

DOI

35
Liu D , Li G Y , Su C , Zheng Y , Jiang Y X , Qian L X , Cao Y P . Effect of ligation on the viscoelastic properties of liver tissues. Journal of Biomechanics, 2018, 76: 235–240

DOI

36
Zheng Y , Jiang Y X , Cao Y P . A porohyperviscoelastic model for the shear wave elastography of the liver. Journal of the Mechanics and Physics of Solids, 2021, 150: 104339

DOI

37
Nafo W , Al-Mayah A . Measuring the hyperelastic response of porcine liver tissues in-vitro using controlled cavitation rheology. Experimental Mechanics, 2021, 61(2): 445–458

DOI

38
Pasyar P , Masjoodi S , Montazeriani Z , Makkiabadi B . A digital viscoelastic liver phantom for investigation of elastographic measurements. Computers in Biology and Medicine, 2020, 127: 104078

DOI

39
Matin Z , Moghimi Zand M , Salmani Tehrani M , Wendland B R , Dargazany R . A visco-hyperelastic constitutive model of short- and long-term viscous effects on isotropic soft tissues. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(1): 3–17

DOI

40
Zhang Y D , Li B , Yuan L P . Study on the control method and optimization experiment of prostate soft tissue puncture. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 218621–218643

DOI

41
Roesthuis R J, van Veen Y R J, Jahya A, Misra S. Mechanics of needle-tissue interaction. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011, 2557–2563

42
Li A D R , Plott J , Chen L , Montgomery J S , Shih A . Needle deflection and tissue sampling length in needle biopsy. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103632

DOI

Outlines

/