Design and evaluation of a novel biopsy needle with hemostatic function

Xiaolong ZHU, Yichi MA, Xiao XIAO, Liang LU, Wei XIAO, Ziqi ZHAO, Hongliang REN, Max Q.-H. MENG

PDF(5080 KB)
PDF(5080 KB)
Front. Mech. Eng. ›› 2023, Vol. 18 ›› Issue (2) : 22. DOI: 10.1007/s11465-022-0738-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Design and evaluation of a novel biopsy needle with hemostatic function

Author information +
History +

Abstract

Biopsy is a method commonly used for early cancer diagnosis. However, bleeding complications of widely available biopsy are risky for patients. Safer biopsy will result in a more accurate cancer diagnosis and a decrease in the risk of complications. In this article, we propose a novel biopsy needle that can reduce bleeding during biopsy procedures and achieve stable hemostasis. The proposed biopsy needle features a compact structure and can be operated easily by left and right hands. A predictive model for puncture force and tip deflection based on coupled Eulerian–Lagrangian (CEL) method is developed. Experimental results show that the biopsy needle can smoothly deliver the gelatin sponge hemostatic plug into the tissue. Although the hemostatic plug bends, the overall delivery process is stable, and the hemostatic plug retains in the tissue without being affected by the withdrawal of the needle. Further experiments indicate that the specimens are well obtained and evenly distributed in the groove of the outer needle without scattering. Our proposed design of biopsy needle possesses strong ability of hemostasis, tissue cutting, and tissue retention. The CEL model accurately predicts the peak of puncture force and produces close estimation of the insertion force at the postpuncture stage and tip position.

Graphical abstract

Keywords

cancer diagnosis / biopsy needle / hemostatic function / predictive model / coupled Eulerian−Lagrangian

Cite this article

Download citation ▾
Xiaolong ZHU, Yichi MA, Xiao XIAO, Liang LU, Wei XIAO, Ziqi ZHAO, Hongliang REN, Max Q.-H. MENG. Design and evaluation of a novel biopsy needle with hemostatic function. Front. Mech. Eng., 2023, 18(2): 22 https://doi.org/10.1007/s11465-022-0738-7

References

[1]
Fitzmaurice C , Dicker D , Pain A , Hamavid H , Moradi-Lakeh M , MacIntyre M F , Allen C , Hansen G , Woodbrook R , Wolfe C , Hamadeh R R , Moore A , Werdecker A , Gessner B D , Te Ao B , McMahon B , Karimkhani C , Yu C H , Cooke G S , Schwebel D C , Carpenter D O , Pereira D M , Nash D , Kazi D S , De Leo D , Plass D , Ukwaja K N , Thurston G D , Jin K Y , Simard E P , Mills E , Park E K , Catalá-López F , deVeber G , Gotay C , Khan G , Hosgood H D III , Santos I S , Leasher J L , Singh J , Leigh J , Jonas J B , Sanabria J , Beardsley J , Jacobsen K H , Takahashi K , Franklin R C , Ronfani L , Montico M , Naldi L , Tonelli M , Geleijnse J , Petzold M , Shrime M G , Younis M , Yonemoto N , Breitborde N , Yip P , Pourmalek F , Lotufo P A , Esteghamati A , Hankey G J , Ali R , Lunevicius R , Malekzadeh R , Dellavalle R , Weintraub R , Lucas R , Hay R , Rojas-Rueda D , Westerman R , Sepanlou S G , Nolte S , Patten S , Weichenthal S , Abera S F , Fereshtehnejad S M , Shiue I , Driscoll T , Vasankari T , Alsharif U , Rahimi-Movaghar V , Vlassov V V , Marcenes W S , Mekonnen W , Melaku Y A , Yano Y , Artaman A , Campos I , MacLachlan J , Mueller U , Kim D , Trillini M , Eshrati B , Williams H C , Shibuya K , Dandona R , Murthy K , Cowie B , Amare A T , Antonio C A , Castañeda-Orjuela C , van Gool C H , Violante F , Oh I H , Deribe K , Soreide K , Knibbs L , Kereselidze M , Green M , Cardenas R , Roy N , Tillmann T , Li Y M , Krueger H , Monasta L , Dey S , Sheikhbahaei S , Hafezi-Nejad N , Kumar G A , Sreeramareddy C T , Dandona L , Wang H D , Vollset S E , Mokdad A , Salomon J A , Lozano R , Vos T , Forouzanfar M , Lopez A , Murray C , Naghavi M . The global burden of cancer 2013. JAMA Oncology, 2015, 1(4): 505–527
CrossRef Google scholar
[2]
Burgard C , Stahl R , de Figueiredo G N , Dinkel J , Liebig T , Cioni D , Neri E , Trumm C G . Percutaneous CT fluoroscopy-guided core needle biopsy of mediastinal masses: technical outcome and complications of 155 procedures during a 10-year period. Diagnostics, 2021, 11(5): 781
CrossRef Google scholar
[3]
James T W , Baron T H . A comprehensive review of endoscopic ultrasound core biopsy needles. Expert Review of Medical Devices, 2018, 15(2): 127–135
CrossRef Google scholar
[4]
TanisakaYMizuideMFujitaAOgawaTArakiRSuzukiMKatsudaHSaitoYMiyaguchiKTashimaTMashimoYYasudaMRyozawaS. Comparison of endoscopic ultrasound-guided fine-needle aspiration and biopsy device for lymphadenopathy. Gastroenterology Research and Practice, 2021, 6640862
[5]
Kurita A , Yasukawa S , Zen Y , Yoshimura K , Ogura T , Ozawa E , Okabe Y , Asada M , Nebiki H , Shigekawa M , Ikeura T , Eguchi T , Maruyama H , Ueki T , Itonaga M , Hashimoto S , Shiomi H , Minami R , Hoki N , Takenaka M , Itokawa Y , Uza N , Hashigo S , Yasuda H , Takada R , Kamada H , Kawamoto H , Kawakami H , Moriyama I , Fujita K , Matsumoto H , Hanada K , Takemura T , Yazumi S . Comparison of a 22-gauge franseen-tip needle with a 20-gauge forward-bevel needle for the diagnosis of type 1 autoimmune pancreatitis: a prospective, randomized, controlled, multicenter study (COMPAS study). Gastrointestinal Endoscopy, 2020, 91(2): 373–381
CrossRef Google scholar
[6]
Ashat M , Klair J S , Rooney S L , Vishal S J , Jensen C , Sahar N , Murali A R , El-Abiad R , Gerke H . Randomized controlled trial comparing the franseen needle with the fork-tip needle for EUS-guided fine-needle biopsy. Gastrointestinal Endoscopy, 2021, 93(1): 140–150
CrossRef Google scholar
[7]
Hedenström P , Demir A , Khodakaram K , Nilsson O , Sadik R . EUS-guided reverse bevel fine-needle biopsy sampling and open tip fine-needle aspiration in solid pancreatic lesions—a prospective, comparative study. Scandinavian Journal of Gastroenterology, 2018, 53(2): 231–237
CrossRef Google scholar
[8]
de Jong T L , Pluymen L H , van Gerwen D J , Kleinrensink G J , Dankelman J , van den Dobbelsteen J J . PVA matches human liver in needle-tissue interaction. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 223–228
CrossRef Google scholar
[9]
Mukai S , Itoi T , Yamaguchi H , Sofuni A , Tsuchiya T , Tanaka R , Tonozuka R , Honjo M , Fujita M , Yamamoto K , Matsunami Y , Asai Y , Kurosawa T , Nagakawa Y . A retrospective histological comparison of EUS-guided fine-needle biopsy using a novel franseen needle and a conventional end-cut type needle. Endoscopic Ultrasound, 2019, 8(1): 50–57
CrossRef Google scholar
[10]
Eiro M , Katoh T , Watanabe T . Risk factors for bleeding complications in percutaneous renal biopsy. Clinical and Experimental Nephrology, 2005, 9(1): 40–45
CrossRef Google scholar
[11]
Csukas D , Urbanics R , Moritz A , Ellis-Behnke R . AC5 Surgical HemostatTM as an effective hemostatic agent in an anticoagulated rat liver punch biopsy model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11(8): 2025–2031
CrossRef Google scholar
[12]
Lyle M A , Dean D S . Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients taking novel oral anticoagulants. Thyroid, 2015, 25(4): 373–376
CrossRef Google scholar
[13]
Fujita M , Shiotani A , Murao T , Ishii M , Yamanaka Y , Nakato R , Matsumoto H , Tarumi K , Manabe N , Kamada T , Hata J , Haruma K . Safety of gastrointestinal endoscopic biopsy in patients taking antithrombotics. Digestive Endoscopy, 2015, 27(1): 25–29
CrossRef Google scholar
[14]
Deng C X , Dogra V , Exner A A , Wang H S , Bhatt S , Zhou Y , Stowe N T , Haaga J R . A feasibility study of high intensity focused ultrasound for liver biopsy hemostasis. Ultrasound in Medicine & Biology, 2004, 30(11): 1531–1537
CrossRef Google scholar
[15]
Viola F, Mauldin F W, Lin-Schmidt X, Haverstick D M, Lawrence M B, Walker W F. A novel ultrasound-based method to evaluate hemostatic function of whole blood. Clinica Chimica Acta, 2010, 411(1–2): 106–113
CrossRef Google scholar
[16]
Alotaibi M , Shrouder-Henry J , Amaral J , Parra D , Temple M , John P , Connolly B . The positive color Doppler sign post biopsy: effectiveness of US-directed compression in achieving hemostasis. Pediatric Radiology, 2011, 41(3): 362–368
CrossRef Google scholar
[17]
Abdulhak A H, Nichols C S. Stick and move: hemostasis for inpatient punch biopsies. Journal of the American Academy of Dermatology, 2021 (in press)
[18]
Rahal Junior A , Falsarella P M , Ferreira V T R , Mariotti G C , de Queiroz M R G , Garcia R G . Injecting hemostatic matrix in the path of biopsies: efficacy, potential complications, and the management of such complications. Radiologia Brasileira, 2018, 51(2): 102–105
CrossRef Google scholar
[19]
Wong P , Johnson K J , Warner R L , Merz S I , Kruger G H , Weitzel W F . Performance of biopsy needle with therapeutic injection system to prevent bleeding complications. Journal of Medical Devices, 2013, 7(1): 011002
CrossRef Google scholar
[20]
Su B Q , Yu S , Yan H , Hu Y D , Buzurovic I , Liu D Y , Liu L L , Teng Y L , Tang J , Wang J C , Liu W Y . Biopsy needle system with a steerable concentric tube and online monitoring of electrical resistivity and insertion forces. IEEE Transactions on Biomedical Engineering, 2021, 68(5): 1702–1713
CrossRef Google scholar
[21]
Lapouge G , Poignet P , Troccaz J . Towards 3D ultrasound guided needle steering robust to uncertainties, noise, and tissue heterogeneity. IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1166–1177
CrossRef Google scholar
[22]
Misra S , Reed K B , Schafer B W , Ramesh K T , Okamura A M . Mechanics of flexible needles robotically steered through soft tissue. International Journal of Robotics Research, 2010, 29(13): 1640–1660
CrossRef Google scholar
[23]
Jushiddi M G , Mani A , Silien C , Tofail S A M , Tiernan P , Mulvihill J J E . A computational multilayer model to simulate hollow needle insertion into biological porcine liver tissue. Acta Biomaterialia, 2021, 136: 389–401
CrossRef Google scholar
[24]
Konh B , Honarvar M , Darvish K , Hutapea P . Simulation and experimental studies in needle–tissue interactions. Journal of Clinical Monitoring and Computing, 2017, 31(4): 861–872
CrossRef Google scholar
[25]
Jiang S , Li P , Yu Y , Liu J , Yang Z Y . Experimental study of needle–tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics. Journal of Biomechanics, 2014, 47(13): 3344–3353
CrossRef Google scholar
[26]
de la Torre R A , Bachman S L , Wheeler A A , Bartow K N , Scott J S . Hemostasis and hemostatic agents in minimally invasive surgery. Surgery, 2007, 142(4): S39–S45
CrossRef Google scholar
[27]
Balakrishnan B , Soman D , Payanam U , Laurent A , Labarre D , Jayakrishnan A . A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomaterialia, 2017, 53: 343–354
CrossRef Google scholar
[28]
Tompeck A J , Gajdhar A U R , Dowling M , Johnson S B , Barie P S , Winchell R J , King D , Scalea T M , Britt L D , Narayan M . A comprehensive review of topical hemostatic agents: the good, the bad, and the novel. Journal of Trauma and Acute Care Surgery, 2020, 88(1): e1–e21
CrossRef Google scholar
[29]
Stauffer P R , Rossetto F , Prakash M , Neuman D G , Lee T . Phantom and animal tissues for modelling the electrical properties of human liver. International Journal of Hyperthermia, 2003, 19(1): 89–101
CrossRef Google scholar
[30]
Carter F J , Frank T G , Davies P J , McLean D , Cuschieri A . Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 2001, 5(4): 231–236
CrossRef Google scholar
[31]
Wineman A . Nonlinear viscoelastic solids—a review. Mathematics and Mechanics of Solids, 2009, 14(3): 300–366
CrossRef Google scholar
[32]
Yang J , Yu L T , Wang L , Wang W J , Cui J W . The estimation method of friction in unconfined compression tests of liver tissue. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232(6): 573–587
CrossRef Google scholar
[33]
Estermann S J , Pahr D H , Reisinger A . Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104038
CrossRef Google scholar
[34]
Li L , Maccabi A , Abiri A , Juo Y Y , Zhang W Y , Chang Y J , Saddik G N , Jin L H , Grundfest W S , Dutson E P , Eldredge J D , Benharash P , Candler R N . Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 591–603
CrossRef Google scholar
[35]
Liu D , Li G Y , Su C , Zheng Y , Jiang Y X , Qian L X , Cao Y P . Effect of ligation on the viscoelastic properties of liver tissues. Journal of Biomechanics, 2018, 76: 235–240
CrossRef Google scholar
[36]
Zheng Y , Jiang Y X , Cao Y P . A porohyperviscoelastic model for the shear wave elastography of the liver. Journal of the Mechanics and Physics of Solids, 2021, 150: 104339
CrossRef Google scholar
[37]
Nafo W , Al-Mayah A . Measuring the hyperelastic response of porcine liver tissues in-vitro using controlled cavitation rheology. Experimental Mechanics, 2021, 61(2): 445–458
CrossRef Google scholar
[38]
Pasyar P , Masjoodi S , Montazeriani Z , Makkiabadi B . A digital viscoelastic liver phantom for investigation of elastographic measurements. Computers in Biology and Medicine, 2020, 127: 104078
CrossRef Google scholar
[39]
Matin Z , Moghimi Zand M , Salmani Tehrani M , Wendland B R , Dargazany R . A visco-hyperelastic constitutive model of short- and long-term viscous effects on isotropic soft tissues. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(1): 3–17
CrossRef Google scholar
[40]
Zhang Y D , Li B , Yuan L P . Study on the control method and optimization experiment of prostate soft tissue puncture. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 218621–218643
CrossRef Google scholar
[41]
Roesthuis R J, van Veen Y R J, Jahya A, Misra S. Mechanics of needle-tissue interaction. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011, 2557–2563
[42]
Li A D R , Plott J , Chen L , Montgomery J S , Shih A . Needle deflection and tissue sampling length in needle biopsy. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103632
CrossRef Google scholar

Nomenclature

Abbreviations
CELCoupled Eulerian–Lagrangian
FEAFinite element analysis
IDInner diameter
ODOuter diameter
Variables
C10Shear modulus of the tissue
EnYoung’s modulus of the needle
fFrictional resistance
g1, g2Relaxation moduli of parts 1 and 2, respectively
G0Relaxation modulus G(t) evaluated in t = 0
GiRelaxation modulus G(t) evaluated in t = τi
G(t)Relaxation modulus
JElastic volume ratio
kBulk modulus
KStiffness coefficient of spring A
mMass of the slider and inner needle
pHydrostatic pressure
tCutting time
vCutting velocity
WStrain energy density
xDisplacement of slider
μShear modulus
λiShield gravity
σNominal stress
σiNominal stress component
εPrincipal stain
εiPrincipal stain component
νnPoisson’s ratio of the needle
ρnDensity of the needle
ρtDensity of the tissue
τi (i = 1,2)Relaxation time

Acknowledgements

This work was partially supported by Shenzhen Key Laboratory of Robotics Perception and Intelligence (Southern University of Science and Technology, China) (Grant No. ZDSYS20200810171800001).

Conflict of Interest

Authors declare no conflict of interest regarding the submitted manuscript.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5080 KB)

Accesses

Citations

Detail

Sections
Recommended

/