Design and evaluation of a novel biopsy needle with hemostatic function
Xiaolong ZHU, Yichi MA, Xiao XIAO, Liang LU, Wei XIAO, Ziqi ZHAO, Hongliang REN, Max Q.-H. MENG
Design and evaluation of a novel biopsy needle with hemostatic function
Biopsy is a method commonly used for early cancer diagnosis. However, bleeding complications of widely available biopsy are risky for patients. Safer biopsy will result in a more accurate cancer diagnosis and a decrease in the risk of complications. In this article, we propose a novel biopsy needle that can reduce bleeding during biopsy procedures and achieve stable hemostasis. The proposed biopsy needle features a compact structure and can be operated easily by left and right hands. A predictive model for puncture force and tip deflection based on coupled Eulerian–Lagrangian (CEL) method is developed. Experimental results show that the biopsy needle can smoothly deliver the gelatin sponge hemostatic plug into the tissue. Although the hemostatic plug bends, the overall delivery process is stable, and the hemostatic plug retains in the tissue without being affected by the withdrawal of the needle. Further experiments indicate that the specimens are well obtained and evenly distributed in the groove of the outer needle without scattering. Our proposed design of biopsy needle possesses strong ability of hemostasis, tissue cutting, and tissue retention. The CEL model accurately predicts the peak of puncture force and produces close estimation of the insertion force at the postpuncture stage and tip position.
cancer diagnosis / biopsy needle / hemostatic function / predictive model / coupled Eulerian−Lagrangian
[1] |
Fitzmaurice C , Dicker D , Pain A , Hamavid H , Moradi-Lakeh M , MacIntyre M F , Allen C , Hansen G , Woodbrook R , Wolfe C , Hamadeh R R , Moore A , Werdecker A , Gessner B D , Te Ao B , McMahon B , Karimkhani C , Yu C H , Cooke G S , Schwebel D C , Carpenter D O , Pereira D M , Nash D , Kazi D S , De Leo D , Plass D , Ukwaja K N , Thurston G D , Jin K Y , Simard E P , Mills E , Park E K , Catalá-López F , deVeber G , Gotay C , Khan G , Hosgood H D III , Santos I S , Leasher J L , Singh J , Leigh J , Jonas J B , Sanabria J , Beardsley J , Jacobsen K H , Takahashi K , Franklin R C , Ronfani L , Montico M , Naldi L , Tonelli M , Geleijnse J , Petzold M , Shrime M G , Younis M , Yonemoto N , Breitborde N , Yip P , Pourmalek F , Lotufo P A , Esteghamati A , Hankey G J , Ali R , Lunevicius R , Malekzadeh R , Dellavalle R , Weintraub R , Lucas R , Hay R , Rojas-Rueda D , Westerman R , Sepanlou S G , Nolte S , Patten S , Weichenthal S , Abera S F , Fereshtehnejad S M , Shiue I , Driscoll T , Vasankari T , Alsharif U , Rahimi-Movaghar V , Vlassov V V , Marcenes W S , Mekonnen W , Melaku Y A , Yano Y , Artaman A , Campos I , MacLachlan J , Mueller U , Kim D , Trillini M , Eshrati B , Williams H C , Shibuya K , Dandona R , Murthy K , Cowie B , Amare A T , Antonio C A , Castañeda-Orjuela C , van Gool C H , Violante F , Oh I H , Deribe K , Soreide K , Knibbs L , Kereselidze M , Green M , Cardenas R , Roy N , Tillmann T , Li Y M , Krueger H , Monasta L , Dey S , Sheikhbahaei S , Hafezi-Nejad N , Kumar G A , Sreeramareddy C T , Dandona L , Wang H D , Vollset S E , Mokdad A , Salomon J A , Lozano R , Vos T , Forouzanfar M , Lopez A , Murray C , Naghavi M . The global burden of cancer 2013. JAMA Oncology, 2015, 1(4): 505–527
CrossRef
Google scholar
|
[2] |
Burgard C , Stahl R , de Figueiredo G N , Dinkel J , Liebig T , Cioni D , Neri E , Trumm C G . Percutaneous CT fluoroscopy-guided core needle biopsy of mediastinal masses: technical outcome and complications of 155 procedures during a 10-year period. Diagnostics, 2021, 11(5): 781
CrossRef
Google scholar
|
[3] |
James T W , Baron T H . A comprehensive review of endoscopic ultrasound core biopsy needles. Expert Review of Medical Devices, 2018, 15(2): 127–135
CrossRef
Google scholar
|
[4] |
TanisakaYMizuideMFujitaAOgawaTArakiRSuzukiMKatsudaHSaitoYMiyaguchiKTashimaTMashimoYYasudaMRyozawaS. Comparison of endoscopic ultrasound-guided fine-needle aspiration and biopsy device for lymphadenopathy. Gastroenterology Research and Practice, 2021, 6640862
|
[5] |
Kurita A , Yasukawa S , Zen Y , Yoshimura K , Ogura T , Ozawa E , Okabe Y , Asada M , Nebiki H , Shigekawa M , Ikeura T , Eguchi T , Maruyama H , Ueki T , Itonaga M , Hashimoto S , Shiomi H , Minami R , Hoki N , Takenaka M , Itokawa Y , Uza N , Hashigo S , Yasuda H , Takada R , Kamada H , Kawamoto H , Kawakami H , Moriyama I , Fujita K , Matsumoto H , Hanada K , Takemura T , Yazumi S . Comparison of a 22-gauge franseen-tip needle with a 20-gauge forward-bevel needle for the diagnosis of type 1 autoimmune pancreatitis: a prospective, randomized, controlled, multicenter study (COMPAS study). Gastrointestinal Endoscopy, 2020, 91(2): 373–381
CrossRef
Google scholar
|
[6] |
Ashat M , Klair J S , Rooney S L , Vishal S J , Jensen C , Sahar N , Murali A R , El-Abiad R , Gerke H . Randomized controlled trial comparing the franseen needle with the fork-tip needle for EUS-guided fine-needle biopsy. Gastrointestinal Endoscopy, 2021, 93(1): 140–150
CrossRef
Google scholar
|
[7] |
Hedenström P , Demir A , Khodakaram K , Nilsson O , Sadik R . EUS-guided reverse bevel fine-needle biopsy sampling and open tip fine-needle aspiration in solid pancreatic lesions—a prospective, comparative study. Scandinavian Journal of Gastroenterology, 2018, 53(2): 231–237
CrossRef
Google scholar
|
[8] |
de Jong T L , Pluymen L H , van Gerwen D J , Kleinrensink G J , Dankelman J , van den Dobbelsteen J J . PVA matches human liver in needle-tissue interaction. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 223–228
CrossRef
Google scholar
|
[9] |
Mukai S , Itoi T , Yamaguchi H , Sofuni A , Tsuchiya T , Tanaka R , Tonozuka R , Honjo M , Fujita M , Yamamoto K , Matsunami Y , Asai Y , Kurosawa T , Nagakawa Y . A retrospective histological comparison of EUS-guided fine-needle biopsy using a novel franseen needle and a conventional end-cut type needle. Endoscopic Ultrasound, 2019, 8(1): 50–57
CrossRef
Google scholar
|
[10] |
Eiro M , Katoh T , Watanabe T . Risk factors for bleeding complications in percutaneous renal biopsy. Clinical and Experimental Nephrology, 2005, 9(1): 40–45
CrossRef
Google scholar
|
[11] |
Csukas D , Urbanics R , Moritz A , Ellis-Behnke R . AC5 Surgical HemostatTM as an effective hemostatic agent in an anticoagulated rat liver punch biopsy model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11(8): 2025–2031
CrossRef
Google scholar
|
[12] |
Lyle M A , Dean D S . Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients taking novel oral anticoagulants. Thyroid, 2015, 25(4): 373–376
CrossRef
Google scholar
|
[13] |
Fujita M , Shiotani A , Murao T , Ishii M , Yamanaka Y , Nakato R , Matsumoto H , Tarumi K , Manabe N , Kamada T , Hata J , Haruma K . Safety of gastrointestinal endoscopic biopsy in patients taking antithrombotics. Digestive Endoscopy, 2015, 27(1): 25–29
CrossRef
Google scholar
|
[14] |
Deng C X , Dogra V , Exner A A , Wang H S , Bhatt S , Zhou Y , Stowe N T , Haaga J R . A feasibility study of high intensity focused ultrasound for liver biopsy hemostasis. Ultrasound in Medicine & Biology, 2004, 30(11): 1531–1537
CrossRef
Google scholar
|
[15] |
Viola F, Mauldin F W, Lin-Schmidt X, Haverstick D M, Lawrence M B, Walker W F. A novel ultrasound-based method to evaluate hemostatic function of whole blood. Clinica Chimica Acta, 2010, 411(1–2): 106–113
CrossRef
Google scholar
|
[16] |
Alotaibi M , Shrouder-Henry J , Amaral J , Parra D , Temple M , John P , Connolly B . The positive color Doppler sign post biopsy: effectiveness of US-directed compression in achieving hemostasis. Pediatric Radiology, 2011, 41(3): 362–368
CrossRef
Google scholar
|
[17] |
Abdulhak A H, Nichols C S. Stick and move: hemostasis for inpatient punch biopsies. Journal of the American Academy of Dermatology, 2021 (in press)
|
[18] |
Rahal Junior A , Falsarella P M , Ferreira V T R , Mariotti G C , de Queiroz M R G , Garcia R G . Injecting hemostatic matrix in the path of biopsies: efficacy, potential complications, and the management of such complications. Radiologia Brasileira, 2018, 51(2): 102–105
CrossRef
Google scholar
|
[19] |
Wong P , Johnson K J , Warner R L , Merz S I , Kruger G H , Weitzel W F . Performance of biopsy needle with therapeutic injection system to prevent bleeding complications. Journal of Medical Devices, 2013, 7(1): 011002
CrossRef
Google scholar
|
[20] |
Su B Q , Yu S , Yan H , Hu Y D , Buzurovic I , Liu D Y , Liu L L , Teng Y L , Tang J , Wang J C , Liu W Y . Biopsy needle system with a steerable concentric tube and online monitoring of electrical resistivity and insertion forces. IEEE Transactions on Biomedical Engineering, 2021, 68(5): 1702–1713
CrossRef
Google scholar
|
[21] |
Lapouge G , Poignet P , Troccaz J . Towards 3D ultrasound guided needle steering robust to uncertainties, noise, and tissue heterogeneity. IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1166–1177
CrossRef
Google scholar
|
[22] |
Misra S , Reed K B , Schafer B W , Ramesh K T , Okamura A M . Mechanics of flexible needles robotically steered through soft tissue. International Journal of Robotics Research, 2010, 29(13): 1640–1660
CrossRef
Google scholar
|
[23] |
Jushiddi M G , Mani A , Silien C , Tofail S A M , Tiernan P , Mulvihill J J E . A computational multilayer model to simulate hollow needle insertion into biological porcine liver tissue. Acta Biomaterialia, 2021, 136: 389–401
CrossRef
Google scholar
|
[24] |
Konh B , Honarvar M , Darvish K , Hutapea P . Simulation and experimental studies in needle–tissue interactions. Journal of Clinical Monitoring and Computing, 2017, 31(4): 861–872
CrossRef
Google scholar
|
[25] |
Jiang S , Li P , Yu Y , Liu J , Yang Z Y . Experimental study of needle–tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics. Journal of Biomechanics, 2014, 47(13): 3344–3353
CrossRef
Google scholar
|
[26] |
de la Torre R A , Bachman S L , Wheeler A A , Bartow K N , Scott J S . Hemostasis and hemostatic agents in minimally invasive surgery. Surgery, 2007, 142(4): S39–S45
CrossRef
Google scholar
|
[27] |
Balakrishnan B , Soman D , Payanam U , Laurent A , Labarre D , Jayakrishnan A . A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomaterialia, 2017, 53: 343–354
CrossRef
Google scholar
|
[28] |
Tompeck A J , Gajdhar A U R , Dowling M , Johnson S B , Barie P S , Winchell R J , King D , Scalea T M , Britt L D , Narayan M . A comprehensive review of topical hemostatic agents: the good, the bad, and the novel. Journal of Trauma and Acute Care Surgery, 2020, 88(1): e1–e21
CrossRef
Google scholar
|
[29] |
Stauffer P R , Rossetto F , Prakash M , Neuman D G , Lee T . Phantom and animal tissues for modelling the electrical properties of human liver. International Journal of Hyperthermia, 2003, 19(1): 89–101
CrossRef
Google scholar
|
[30] |
Carter F J , Frank T G , Davies P J , McLean D , Cuschieri A . Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 2001, 5(4): 231–236
CrossRef
Google scholar
|
[31] |
Wineman A . Nonlinear viscoelastic solids—a review. Mathematics and Mechanics of Solids, 2009, 14(3): 300–366
CrossRef
Google scholar
|
[32] |
Yang J , Yu L T , Wang L , Wang W J , Cui J W . The estimation method of friction in unconfined compression tests of liver tissue. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232(6): 573–587
CrossRef
Google scholar
|
[33] |
Estermann S J , Pahr D H , Reisinger A . Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104038
CrossRef
Google scholar
|
[34] |
Li L , Maccabi A , Abiri A , Juo Y Y , Zhang W Y , Chang Y J , Saddik G N , Jin L H , Grundfest W S , Dutson E P , Eldredge J D , Benharash P , Candler R N . Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 591–603
CrossRef
Google scholar
|
[35] |
Liu D , Li G Y , Su C , Zheng Y , Jiang Y X , Qian L X , Cao Y P . Effect of ligation on the viscoelastic properties of liver tissues. Journal of Biomechanics, 2018, 76: 235–240
CrossRef
Google scholar
|
[36] |
Zheng Y , Jiang Y X , Cao Y P . A porohyperviscoelastic model for the shear wave elastography of the liver. Journal of the Mechanics and Physics of Solids, 2021, 150: 104339
CrossRef
Google scholar
|
[37] |
Nafo W , Al-Mayah A . Measuring the hyperelastic response of porcine liver tissues in-vitro using controlled cavitation rheology. Experimental Mechanics, 2021, 61(2): 445–458
CrossRef
Google scholar
|
[38] |
Pasyar P , Masjoodi S , Montazeriani Z , Makkiabadi B . A digital viscoelastic liver phantom for investigation of elastographic measurements. Computers in Biology and Medicine, 2020, 127: 104078
CrossRef
Google scholar
|
[39] |
Matin Z , Moghimi Zand M , Salmani Tehrani M , Wendland B R , Dargazany R . A visco-hyperelastic constitutive model of short- and long-term viscous effects on isotropic soft tissues. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(1): 3–17
CrossRef
Google scholar
|
[40] |
Zhang Y D , Li B , Yuan L P . Study on the control method and optimization experiment of prostate soft tissue puncture. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 218621–218643
CrossRef
Google scholar
|
[41] |
Roesthuis R J, van Veen Y R J, Jahya A, Misra S. Mechanics of needle-tissue interaction. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011, 2557–2563
|
[42] |
Li A D R , Plott J , Chen L , Montgomery J S , Shih A . Needle deflection and tissue sampling length in needle biopsy. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103632
CrossRef
Google scholar
|
Abbreviations | |
CEL | Coupled Eulerian–Lagrangian |
FEA | Finite element analysis |
ID | Inner diameter |
OD | Outer diameter |
Variables | |
C10 | Shear modulus of the tissue |
En | Young’s modulus of the needle |
f | Frictional resistance |
g1, g2 | Relaxation moduli of parts 1 and 2, respectively |
G0 | Relaxation modulus G(t) evaluated in t = 0 |
Gi | Relaxation modulus G(t) evaluated in t = τi |
G(t) | Relaxation modulus |
J | Elastic volume ratio |
k | Bulk modulus |
K | Stiffness coefficient of spring A |
m | Mass of the slider and inner needle |
p | Hydrostatic pressure |
t | Cutting time |
v | Cutting velocity |
W | Strain energy density |
x | Displacement of slider |
μ | Shear modulus |
λi | Shield gravity |
σ | Nominal stress |
σi | Nominal stress component |
ε | Principal stain |
εi | Principal stain component |
νn | Poisson’s ratio of the needle |
ρn | Density of the needle |
ρt | Density of the tissue |
τi (i = 1,2) | Relaxation time |
/
〈 | 〉 |