Frontiers of Mechanical Engineering >
Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions
Received date: 14 Nov 2018
Accepted date: 22 Jul 2019
Published date: 15 Jun 2020
Copyright
This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles (Cu NPs) on polyethylene terephthalate polymer film. These materials are commonly used in manufacturing functional printed electronics for large-area applications. Here, optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions. Direct diode (808 nm), Nd:YAG (1064 nm and second harmonic of 532 nm), and ytterbium fiber (1070 nm) lasers are explored. Optimal parameters for sintering the Cu NPs are identified for each laser system, which targets low resistivity and high processing speed. Finally, the quality of the sintered tracks is quantified, and the laser sintering mechanisms observed under different wavelengths are analyzed. Practical considerations are discussed to improve the laser sintering process of Cu NPs.
Key words: laser sintering; copper nanoparticles; printed electronics
Juan Carlos HERNANDEZ-CASTANEDA , Boon Keng LOK , Hongyu ZHENG . Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions[J]. Frontiers of Mechanical Engineering, 2020 , 15(2) : 303 -318 . DOI: 10.1007/s11465-019-0562-x
1 |
Ko S H, Pan H, Grigoropoulos C P,
|
2 |
Buffat P, Borel J P. Size effect on the melting temperature of gold particles. Physical Review A, 1976, 13(6): 2287–2298
|
3 |
Bieri N R, Chung J, Haferl S E,
|
4 |
Kim T Y, Hwang J Y, Moon S J.Laser curing of the silver/copper nanoparticle ink via optical property measurement and calculation.Japanese Journal of Applied Physics, 2010, 49(5S1): 05EA09(1-6)
|
5 |
Bieri N R, Chung J, Poulikakos D,
|
6 |
Kim M K, Kang H, Kang K,
|
7 |
Chung J, Bieri N R, Ko S,
|
8 |
Ko S H, Pan H, Grigoropoulos C P,
|
9 |
Bieri N R, Chung J, Poulikakos D,
|
10 |
Choi T Y, Poulikakos D, Grigoropoulos C P. Fountain-pen-based laser microstructuring with gold nanoparticle inks. Applied Physics Letters, 2004, 85(1): 13–15
|
11 |
Chung J, Ko S, Bieri N R,
|
12 |
Ko S H, Chung J, Pan H,
|
13 |
Ko S H, Pan K, Hwang D J,
|
14 |
Alemohammad H, Aminfar O, Toyserkani E. Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted maskless microdeposition. Journal of Micromechanics and Microengineering, 2008, 18(11): 115015
|
15 |
Kumpulainen T, Pekkanen J. Utilization of 515 nm pulsed fiber laser for low temperature nanoparticle sintering. In: Proceedings of the 27th International Congress on Applications of Lasers & Electro-Optics. Temecula: Laser Institute of America, 2008
|
16 |
Son Y, Lim T W, Yeo J,
|
17 |
Kumpulainen T, Pekkanen J, Valkama J,
|
18 |
Lesyuk R, Jillek W, Bobitski Y,
|
19 |
Niizeki T, Maekawa K, Mita M,
|
20 |
Kim M K, Hwang J Y, Kang H,
|
21 |
Laakso P, Ruotsalainen S, Halonen E,
|
22 |
Aminuzzaman M, Watanabe A, Miyashita T. Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film. Journal of Nanoparticle Research, 2010, 12(3): 931–938
|
23 |
Tsutsui Y, Yamasaki K, Maekawa K,
|
24 |
Yoon Y H, Yi S M, Yim J R,
|
25 |
Kang B, Kno J, Yang M. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate. Journal of Micromechanics and Microengineering, 2011, 21(7): 075017
|
26 |
Kang B, Ko S, Kim J,
|
27 |
Kim M G, Kanatzidis M G, Facchetti A,
|
28 |
Lee D G, Kim D K, Moon Y J,
|
29 |
Niittynen J, Abbel R, Mäntysalo M,
|
30 |
Qin G, Watanabe A. Conductive network structure formed by laser sintering of silver nanoparticles. Journal of Nanoparticle Research, 2014, 16(11): 2684
|
31 |
Yung K C, Plura T S. Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles. Applied Physics A, 2010, 101(2): 393–397
|
32 |
Joo M, Lee B, Jeong S,
|
33 |
Lee J, Lee B, Jeong S,
|
34 |
Lee J, Lee B, Jeong S,
|
35 |
Yu J H, Kang K T, Hwang J Y,
|
36 |
Intrinsiq Materials. Screen print copper paste for PV metalisation. Available at Intrinsiq Materials website on September 15, 2019
|
37 |
Soltani A, Khorramdel Vahed B, Mardoukhi A,
|
38 |
Kwon J, Cho H, Eom H,
|
39 |
Cheng C W, Chen J K. Femtosecond laser sintering of copper nanoparticles. Applied Physics A, 2016, 122(4): 289
|
40 |
Roy N K, Dibua O G, Jou W,
|
41 |
Roy N K, Dibua O G, Foong C S,
|
42 |
Roy N K, Jou W, Feng H,
|
43 |
Perry R H. Perry’s Chemical Engineers’ Handbook. 7th ed. New York: McGraw-Hill, 1997
|
44 |
Shyjumon I, Gopinadhan M, Ivanova O,
|
45 |
Son Y, Yeo J, Moon H,
|
46 |
Lawrence Yao Y, Chen H, Zhang W. Time scale effects in laser material removal: A review. International Journal of Advanced Manufacturing Technology, 2005, 26(5–6): 598–608
|
47 |
Hu M, Hartland G V. Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. Journal of Physical Chemistry B, 2002, 106(28): 7029–7033
|
48 |
Kang J S, Kim H S, Ryu J,
|
49 |
MacDonald W A. Engineered films for display technologies. Journal of Materials Chemistry, 2004, 14(1): 4–10
|
50 |
Bäuerle D. Laser Processing and Chemistry. Berlin: Springer, 2011, 739–781
|
51 |
Min H, Lee B, Jeong S,
|
/
〈 | 〉 |