RESEARCH ARTICLE

Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying

  • Kirsten BOBZIN 1 ,
  • Nazlim BAGCIVAN 1 ,
  • Lidong ZHAO 1 ,
  • Ivica PETKOVIC , 1 ,
  • Jochen SCHEIN 2 ,
  • Karsten HARTZ-BEHREND 2 ,
  • Stefan KIRNER 2 ,
  • José-Luis MARQUÉS 2 ,
  • Günter FORSTER 2
Expand
  • 1. Surface Engineering Institute, RWTH Aachen University, 52072 Aachen, Germany
  • 2. Institute of Plasma Technology and Mathematics, Universität der Bundeswehr München, Neubiberg, Germany

Received date: 26 Aug 2010

Accepted date: 19 Oct 2010

Published date: 05 Sep 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.

Cite this article

Kirsten BOBZIN , Nazlim BAGCIVAN , Lidong ZHAO , Ivica PETKOVIC , Jochen SCHEIN , Karsten HARTZ-BEHREND , Stefan KIRNER , José-Luis MARQUÉS , Günter FORSTER . Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying[J]. Frontiers of Mechanical Engineering, 2011 , 6(3) : 324 -331 . DOI: 10.1007/s11465-011-0125-2

Acknowledgements

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) within the project “Homogenization of Coating Properties in Atmospheric Plasma Spraying” (Bo 1979/7-1 and Sche 428/6-1).
Notations
Bmagnetic flux density
cpspecific heat capacity by constant pressure
Delectric displacement field
Eelectric field
fLLorentz force density
fTtemperature distribution
fvvelocity distribution
ggravitation acceleration
m ˙mass flow
Hmagnetic field
henthalpy density
jcurrent density
ppressure
rradial coordinate
SJoulejoule heating rate density
SRadradiation rate density
SNetnet emission rate density
SAbsreabsorbed radiation rate density
Ttemperature
ttime
vplasma velocity
W ˙effeffective power
ugas velocity
Greek letters
λthermal conductivity
ρgas density
Θangular coordinate
ρfcharge density
σelectric permeability
τstress tensor
μfmagnetic permeability
1
Pfender E. Thermal plasma technology: Where do we stand and where do we go. Plasma Chemistry and Plasma Processing, 1999, 19(1): 1–31

DOI

2
Fauchais P. Understanding plasma spraying. Journal of Physics. D, Applied Physics, 2004, 37(9): 86–108

DOI

3
Fauchais P, Fukumoto M, Vardelle A, Vardelle M. Knowledge concerning splat formation: An invited review. J Thermal Spray Technol, 2004, 13(3): 337–360

DOI

4
Dorier J L, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G. Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch. IEEE Transactions on Plasma Science, 2001, 29(3): 494–501

DOI

5
Dzulko M, Forster G, Landes K D, Zierhut J, Nassenstein K. Plasma torch developments. In: Proc of the International Thermal Spray Conference, Basel, Switzerland, DVS Deutscher Verband für Schweißen, 2005

6
Fauchais P, Montavon P, Vardelle M, Cedelle J. Developments in direct current plasma spraying. Surface and Coatings Technology, 2006, 201(5): 1908–1921

DOI

7
Bobzin K, Ernst F, Richardt K, Sporer D, Fiala P. Tailor-made coatings for turbine applications using the triplex pro 200. In: Proc International Thermal Spray Conference, Maastricht, Netherlands, DVS Deutscher Verband für Schweißen, 2008

8
Schein J, Richter M, Landes K D, Forster G, Zierhut J, Dzulko M. Tomographic investigation of plasma jets produced by multielectrode plasma torches. J Thermal Spray Technol, 2008, 17(3): 338–343

DOI

9
Baudry C, Vardelle A, Mariaux G. Numerical modeling of a DC non-transferred plasma torch: Movement of the arc anode attachment and resulting anode erosion. High Tech Plasma Proc, 2005, 9(1): 1–15

10
Trelles J P, Chazelas C, Vardelle A, Heberlein J V R. Arc Plasma Torch Modeling. J Thermal Spray Technol, 2009, 18(5-6): 728–752

DOI

11
Felix A, Muggli F, Molz R J, McCullough R, Hawley D.Improvement of plasma gun performance using comprehensive fluid element modelling: Part I. J Thermal Spray Technol, 2007, 16(5-6): 677–683

12
Molz R, McCullough R, Hawley D, Muggli F. Improvement of plasma gun performance using comprehensive fluid element modelling: Part II. J Thermal Spray Technol, 2007, 16(5-6): 684–689

DOI

13
Speckhofer G. Der magnetisch ausgelenkte Argonhochdruck-lichtbogen: Experimentelle untersuchungen and 3D-Modellierung. Dissertation for the Doctoral Degree, TU München, 1995: 27–29 (in German)

14
Murphy A B, Arundelli C J. Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chemistry and Plasma Processing, 1994, 14(4): 451–490

DOI

15
Marqués J L, Forster G, Schein J. Multi-electrode plasma torches: Motivation for development and current state-of-the-art. Open Plasma Phys J, 2009, 2(2): 89–98

DOI

16
Boulos M, Fauchais P, Pfender E. Thermal Plasmas. New York: Plenum Press, 1994

Outlines

/